Early breast cancer detection via infrared thermography using a CNN enhanced with particle swarm optimization

热成像 红外线的 粒子群优化 乳腺癌 计算机科学 癌症 医学 内科学 机器学习 光学 物理
作者
Riyadh M Alzahrani,Mohamed Yacin Sikkandar,S. Sabarunisha Begum,Ahmed Farag Salem Babetat,Maryam Alhashim,Abdulrahman Alduraywish,Nirmalendu Prakash,E. Y. K. Ng
出处
期刊:Scientific Reports [Springer Nature]
卷期号:15 (1): 25290-25290 被引量:2
标识
DOI:10.1038/s41598-025-11218-0
摘要

Breast cancer remains the most prevalent cause of cancer-related mortality among women worldwide, with an estimated incidence exceeding 500,000 new cases annually. Timely diagnosis is vital for enhancing therapeutic outcomes and increasing survival probabilities. Although conventional diagnostic tools such as mammography are widely used and generally effective, they are often invasive, costly, and exhibit reduced efficacy in patients with dense breast tissue. Infrared thermography, by contrast, offers a non-invasive and economical alternative; however, its clinical adoption has been limited, largely due to difficulties in accurate thermal image interpretation and the suboptimal tuning of machine learning algorithms. To overcome these limitations, this study proposes an automated classification framework that employs convolutional neural networks (CNNs) for distinguishing between malignant and benign thermographic breast images. An Enhanced Particle Swarm Optimization (EPSO) algorithm is integrated to automatically fine-tune CNN hyperparameters, thereby minimizing manual effort and enhancing computational efficiency. The methodology also incorporates advanced image preprocessing techniques-including Mamdani fuzzy logic-based edge detection, Contrast-Limited Adaptive Histogram Equalization (CLAHE) for contrast enhancement, and median filtering for noise suppression-to bolster classification performance. The proposed model achieves a superior classification accuracy of 98.8%, significantly outperforming conventional CNN implementations in terms of both computational speed and predictive accuracy. These findings suggest that the developed system holds substantial potential for early, reliable, and cost-effective breast cancer screening in real-world clinical environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助dxtmm采纳,获得20
刚刚
刘亦菲暧昧对象完成签到 ,获得积分10
1秒前
1秒前
端庄的石头完成签到 ,获得积分10
2秒前
唐小刚发布了新的文献求助10
2秒前
2秒前
小巧健柏完成签到,获得积分10
2秒前
2秒前
kkkk发布了新的文献求助10
3秒前
SciGPT应助廖其琪采纳,获得10
3秒前
Adel完成签到 ,获得积分10
3秒前
梓榆发布了新的文献求助10
3秒前
rena521完成签到,获得积分10
3秒前
文献查找发布了新的文献求助10
4秒前
嗯哼完成签到,获得积分10
5秒前
will完成签到 ,获得积分10
5秒前
6秒前
丘比特应助limone采纳,获得10
6秒前
rena521发布了新的文献求助10
8秒前
sunialnd完成签到,获得积分10
8秒前
8秒前
Ly发布了新的文献求助10
8秒前
9秒前
IP41320完成签到,获得积分20
9秒前
10秒前
小二郎应助kkkk采纳,获得10
10秒前
帅气的大白菜完成签到,获得积分10
11秒前
11秒前
脑洞疼应助小龙虾仙女采纳,获得30
11秒前
嗯哼发布了新的文献求助10
12秒前
李李05发布了新的文献求助10
13秒前
科研通AI6应助乐观金毛采纳,获得10
15秒前
庄建煌发布了新的文献求助10
15秒前
PengqianGuo完成签到,获得积分10
15秒前
16秒前
合适尔蝶发布了新的文献求助10
16秒前
18秒前
ying完成签到,获得积分10
19秒前
19秒前
诚心寄松应助梓榆采纳,获得10
23秒前
高分求助中
晶体学对称群—如何读懂和应用国际晶体学表 1500
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
Machine Learning for Polymer Informatics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5384679
求助须知:如何正确求助?哪些是违规求助? 4507461
关于积分的说明 14028131
捐赠科研通 4417171
什么是DOI,文献DOI怎么找? 2426330
邀请新用户注册赠送积分活动 1419077
关于科研通互助平台的介绍 1397405