Generation of multidisease fundus photographs with code-free platform

眼底(子宫) 人工智能 计算机科学 训练集 医学 计算机视觉 模式识别(心理学) 验光服务 眼科
作者
Huiyu Liang,Qi Zhang,Tian Lin,Chenli Hu,Chuanming Zheng,Xue Yao,MIN-TSONG CHEN,Yifan Chen,Yih‐Chung Tham,Haoyu Chen
出处
期刊:British Journal of Ophthalmology [BMJ]
卷期号:: bjo-326741
标识
DOI:10.1136/bjo-2024-326741
摘要

Purpose To generate fundus photographs of multiple kinds of retinal disease, bypassing the requirement of coding technique. Methods The dataset contained fundus photographs of 10 categories of retinal conditions, with 500 fundus photographs in each category. We randomly divided the collected data into a training set (80%) and a test set (20%). Google Colaboratory was used to implement Pix2Pix to generate fundus photographs for each category. We compared the diagnostic abilities of ophthalmologists on both real and synthetic images. The diagnostic performance of the classification models trained on real, synthetic and combined data sets was also compared. Furthermore, the real and synthesised images were distinguished by ophthalmologists and artificial intelligence (AI) image detection websites. Results Fundus photographs of 10 categories were successfully synthesised using our method. The synthetic images showed slightly higher diagnostic accuracy by the three ophthalmologists than the real images (99.7% vs 98.7%, 98.0% vs 96.0% and 99.7% vs 94.3%; p=0.109). Training ResNet-50 and VGG-19 models with a combination of real and synthetic images resulted in significant improvements in accuracy, achieving 93.7% and 89.3%, respectively. Five residents achieved at least 92.5% accuracy in discriminating between real and synthetic images. In contrast, three AI image detection websites showed limited capability in this task, with a maximum accuracy of 51.2%. Conclusion Pix2Pix on Google Colaboratory can efficiently produce a diverse range of fundus images with typical characters.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
阿伟发布了新的文献求助10
1秒前
不是阿花发布了新的文献求助10
1秒前
诚心冬亦发布了新的文献求助10
1秒前
2秒前
2秒前
2秒前
2秒前
HLS发布了新的文献求助10
2秒前
小寻发布了新的文献求助10
3秒前
3秒前
4秒前
4秒前
一个西藏发布了新的文献求助10
5秒前
靓丽月亮应助CJ采纳,获得10
6秒前
6秒前
XX完成签到,获得积分10
6秒前
伯云完成签到,获得积分10
6秒前
6秒前
6秒前
Joy发布了新的文献求助10
7秒前
乘风破浪完成签到,获得积分10
8秒前
hanhanhan发布了新的文献求助20
8秒前
9秒前
9秒前
科研通AI6应助freedommm采纳,获得10
9秒前
9秒前
10秒前
大力日记本完成签到,获得积分10
10秒前
聪明安筠完成签到,获得积分10
10秒前
秘书处堂发布了新的文献求助10
12秒前
12秒前
12秒前
13秒前
聪明安筠发布了新的文献求助10
13秒前
13秒前
星辰大海应助Hqing采纳,获得10
13秒前
王檬发布了新的文献求助10
13秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2000
줄기세포 생물학 1000
Biodegradable Embolic Microspheres Market Insights 888
Quantum reference frames : from quantum information to spacetime 888
McCance and Widdowson's Composition of Foods, 7th edition 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4468497
求助须知:如何正确求助?哪些是违规求助? 3929458
关于积分的说明 12193004
捐赠科研通 3582980
什么是DOI,文献DOI怎么找? 1969136
邀请新用户注册赠送积分活动 1007432
科研通“疑难数据库(出版商)”最低求助积分说明 901415