Exploring lithium-ion diffusion and electronic properties in defective graphite via molecular dynamics and density functional theory

材料科学 密度泛函理论 石墨 扩散 锂(药物) 阳极 离子 空位缺陷 分子动力学 化学物理 热力学 计算化学 复合材料 化学 结晶学 物理化学 电极 有机化学 物理 内分泌学 医学
作者
Zhongjing Ren,Ding Shen,YanZhen Ji,Shidi Yang,Yonghui Ma,Nuo Li,Youzhi Yang,Wei Dong,Shuwei Tang
出处
期刊:Journal of Chemical Physics [American Institute of Physics]
卷期号:163 (6)
标识
DOI:10.1063/5.0278278
摘要

The thermodynamic, kinetic, and mechanical properties of graphite anodes significantly influence the performance of lithium-ion batteries. Molecular dynamics simulations and density functional theory calculations were employed to examine the effects of defects in graphite on these properties. In particular, the influence of three types of defects—Stone–Wales (SW), single vacancy (SV), and double vacancy (DV)—at defect densities below 0.4% was analyzed, including their impact on graphite density, charge transfer, voltage, lithium-ion diffusion, and mechanical stability. The results show that defects in graphite form bridge, ylide, and spiro configurations, with structural stability decreasing in the order of SV > SW > DV. As defect density increases, the lithium-ion diffusion coefficient decreases significantly from 4.71 × 10−8 to 3.75 × 10−11 Å2/ps as lithium concentration increases from Li0.02C6 to LiC6. In contrast, for Li0.02C6, the diffusion coefficient rises with increasing defect density, from 2.94 × 10−9 to 1.29 × 10−9 Å2/ps. Mechanical analysis reveals that increasing defect density reduces Young’s modulus from 936.49 to 743.54 GPa and ultimate tensile strength from 94.59 to 58.50 GPa, highlighting the detrimental effect of defects on graphite's mechanical stability. Defects introduce localized electronic states within the bandgap, promoting lithium-ion diffusion at higher concentrations and disrupting the graphite structure to create new diffusion paths. These findings underscore the critical role of defect engineering in optimizing graphite anode performance and provide insights for the design of high-performance anode materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
林珍发布了新的文献求助10
1秒前
ddddd发布了新的文献求助10
1秒前
1秒前
1秒前
abc完成签到 ,获得积分10
1秒前
珂珂完成签到,获得积分10
1秒前
刘太冰完成签到,获得积分10
2秒前
SIMON完成签到 ,获得积分10
2秒前
超级访云完成签到,获得积分10
2秒前
雪白沛春完成签到,获得积分10
2秒前
烟花应助aaaaaa采纳,获得10
2秒前
3秒前
yybaobao完成签到,获得积分10
3秒前
浮嘟嘟发布了新的文献求助10
4秒前
4秒前
zz完成签到,获得积分10
4秒前
SciGPT应助勤劳曼香采纳,获得10
4秒前
impgod发布了新的文献求助10
4秒前
研友_VZG7GZ应助幽默孤容采纳,获得10
4秒前
上官若男应助幽默孤容采纳,获得10
4秒前
大白鹅完成签到,获得积分10
4秒前
4秒前
烟花应助幽默孤容采纳,获得10
4秒前
汉堡包应助幽默孤容采纳,获得10
4秒前
慕青应助幽默孤容采纳,获得30
4秒前
kk_1315完成签到,获得积分0
5秒前
洁净灭男发布了新的文献求助10
5秒前
红柚完成签到 ,获得积分10
5秒前
SciGPT应助fzhou采纳,获得10
6秒前
阳yang发布了新的文献求助20
6秒前
牛肉面完成签到 ,获得积分10
6秒前
舒适的白开水完成签到,获得积分10
6秒前
Blaseaka完成签到 ,获得积分0
7秒前
小周完成签到,获得积分10
7秒前
咚咚发布了新的文献求助10
7秒前
microgravity发布了新的文献求助10
7秒前
LIN发布了新的文献求助10
7秒前
luna发布了新的文献求助10
7秒前
zz发布了新的文献求助10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5402598
求助须知:如何正确求助?哪些是违规求助? 4521214
关于积分的说明 14084549
捐赠科研通 4435204
什么是DOI,文献DOI怎么找? 2434608
邀请新用户注册赠送积分活动 1426723
关于科研通互助平台的介绍 1405516