密度泛函理论
石墨烯
催化作用
二聚体
对偶(语法数字)
氧还原反应
氧气
氮气
化学
氧还原
兴奋剂
材料科学
金属
无机化学
光化学
纳米技术
计算化学
物理化学
有机化学
电化学
艺术
文学类
光电子学
电极
作者
Wei Luo,Chuanji Zhou,Shuang Hao,Cheng Li,Minghui Yao
出处
期刊:PubMed
日期:2025-07-19
卷期号:: e2500299-e2500299
标识
DOI:10.1002/cphc.202500299
摘要
Developing highly effective single-atom catalysts for oxygen reduction reaction (ORR) is critical to improve fuel cell efficiency. Hence, this study systematically investigates ORR performance of single-metal (FeN4-G, NiN4-G) and dual-metal (FeNiN3-G) catalysts embedded in nitrogen-doped graphene through density functional theory (DFT) calculations. Through analysis of ORR intermediates adsorption on M-N-C surfaces, the Gibbs free energy changes, density of states, and electron transfer profiles of catalytic systems are investigated. DFT calculations reveal that while the over-binding of FeN4-G and intermediates impedes desorption kinetics and weak interactions of NiN4-G favor the less efficient 2e- pathway, FeNiN3-G addresses these limitations through synergistic Fe-Ni electronic coupling. By optimizing d-band alignment and charge redistribution, FeNiN3-G lowers the rate-determining step energy barrier and reduces overpotential. Moreover, the dual-metal configuration promotes selective 4e- ORR via efficient OO bond cleavage. This work provides mechanistic insights for designing high-efficiency M-N-C electrocatalysts for energy conversion technologies.
科研通智能强力驱动
Strongly Powered by AbleSci AI