水准点(测量)
油藏计算
吸引子
计算机科学
混乱的
混乱的边缘
计算
相变
钥匙(锁)
人工神经网络
GSM演进的增强数据速率
相(物质)
统计物理学
人工智能
物理
算法
数学
循环神经网络
地质学
数学分析
量子力学
计算机安全
大地测量学
作者
Anastasiia A. Emelianova,Oleg V. Maslennikov,Vladimir I. Nekorkin
出处
期刊:Chaos
[American Institute of Physics]
日期:2025-10-01
卷期号:35 (10)
摘要
We propose a novel reservoir neural network model that incorporates key properties of brain neural ensembles, including adaptivity, higher-order interactions among units, and the presence of a phase transition, which allows “edge-of-chaos computations.” The network’s performance was evaluated on benchmark machine learning tasks, such as reproducing multidimensional periodic patterns and predicting the dynamics of the chaotic Lorenz attractor. Our findings indicate that interelement couplings primarily contribute to generating the target output. Furthermore, we demonstrate that a new phase transition occurs after learning, such that the dynamics of the phases become different from the initial.
科研通智能强力驱动
Strongly Powered by AbleSci AI