Correlated and Multi-frequency Diffusion Modeling for Highly Under-sampled MRI Reconstruction

计算机科学 频域 迭代重建 过程(计算) 人工智能 噪音(视频) 扩散 图像(数学) 计算机视觉 算法 模式识别(心理学) 物理 热力学 操作系统
作者
Yu Guan,Chuanming Yu,Zhuo‐Xu Cui,Huilin Zhou,Qiegen Liu
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:6
标识
DOI:10.1109/tmi.2024.3381610
摘要

Given the obstacle in accentuating the reconstruction accuracy for diagnostically significant tissues, most existing MRI reconstruction methods perform targeted reconstruction of the entire MR image without considering fine details, especially when dealing with highly under-sampled images. Therefore, a considerable volume of efforts has been directed towards surmounting this challenge, as evidenced by the emergence of numerous methods dedicated to preserving high-frequency content as well as fine textural details in the reconstructed image. In this case, exploring the merits associated with each method of mining high-frequency information and formulating a reasonable principle to maximize the joint utilization of these approaches will be a more effective solution to achieve accurate reconstruction. Specifically, this work constructs an innovative principle named Correlated and Multi-frequency Diffusion Model (CM-DM) for highly under-sampled MRI reconstruction. In essence, the rationale underlying the establishment of such principle lies not in assembling arbitrary models, but in pursuing the effective combinations and replacement of components. It also means that the novel principle focuses on forming a correlated and multi-frequency prior through different high-frequency operators in the diffusion process. Moreover, multi-frequency prior further constraints the noise term closer to the target distribution in the frequency domain, thereby making the diffusion process converge faster. Experimental results verify that the proposed method achieved superior reconstruction accuracy, with a notable enhancement of approximately 2dB in PSNR compared to state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
2秒前
坚定尔蓝完成签到,获得积分10
2秒前
萌&完成签到,获得积分10
3秒前
害怕的水之完成签到,获得积分10
4秒前
5秒前
伯赏剑发布了新的文献求助10
5秒前
英姑应助粗暴的火龙果采纳,获得10
6秒前
sherry发布了新的文献求助10
6秒前
科研通AI6应助潮汐采纳,获得10
6秒前
科研通AI5应助桃子采纳,获得10
7秒前
7秒前
博修发布了新的文献求助10
7秒前
小雨发布了新的文献求助10
8秒前
zzz发布了新的文献求助10
8秒前
qwer发布了新的文献求助10
8秒前
9秒前
zhl完成签到,获得积分10
9秒前
10秒前
槐序深巷发布了新的文献求助10
10秒前
yy完成签到,获得积分10
11秒前
小明应助博修采纳,获得10
12秒前
成就寄瑶完成签到,获得积分20
13秒前
赘婿应助zzz采纳,获得10
13秒前
无聊的万天完成签到,获得积分10
13秒前
量子星尘发布了新的文献求助10
15秒前
15秒前
成就寄瑶发布了新的文献求助10
15秒前
18秒前
llzuo完成签到,获得积分10
20秒前
20秒前
冷傲迎梅完成签到 ,获得积分10
20秒前
KKDDBB发布了新的文献求助10
21秒前
量子星尘发布了新的文献求助20
22秒前
从容的白凝完成签到,获得积分20
22秒前
科目三应助123lx采纳,获得10
22秒前
23秒前
隐形的非笑完成签到 ,获得积分10
23秒前
霜降发布了新的文献求助10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
载人航天技术(下册)载人航天出版工程 作者:陈善广 ISBN:9787515914695 300
创造互补优势国外有人/无人协同解析 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4649652
求助须知:如何正确求助?哪些是违规求助? 4037707
关于积分的说明 12488697
捐赠科研通 3727616
什么是DOI,文献DOI怎么找? 2057427
邀请新用户注册赠送积分活动 1088328
科研通“疑难数据库(出版商)”最低求助积分说明 969471