From Atomic-Level Synthesis to Device-Scale Reactors: A Multiscale Approach to Water Electrolysis

电解水 电解 催化作用 电催化剂 表征(材料科学) 纳米技术 分解水 制氢 耐久性 贵金属 工艺工程 电化学 电解质 材料科学 表面工程 化学 电极 工程类 物理化学 生物化学 光催化 复合材料
作者
Xiangbowen Du,Menghui Qi,Yong Wang
出处
期刊:Accounts of Chemical Research [American Chemical Society]
标识
DOI:10.1021/acs.accounts.4c00029
摘要

ConspectusThe development of an advanced energy conversion system for water electrolysis with high efficiency and durability is of great significance for a hydrogen-powered society. This progress relies on the fabrication of electrocatalysts with superior electrochemical performance. Despite decades of advancements in exploring high-performance noble and non-noble metal electrocatalysts, several challenges persist at both the micro- and macrolevels in the field of water electrolysis.At the microlevel, which encompasses electrocatalyst synthesis and characterization, design strategies for high-performance electrocatalysts have primarily focused on interface chemical engineering. However, comprehensive understanding and investigation of interface chemical engineering across various length scales, from micrometers to atomic scales, are still lacking. This deficiency hampers the rational design of catalysts with optimal performance. Under harsh reaction conditions, such as high bias potential and highly acidic or alkaline media, the surface of catalyst materials is susceptible to undergoing "reconstruction", deviating from what is observed through ex situ characterization techniques postsynthesis. Conventional ex situ characterization methods do not provide an accurate depiction of the catalyst's structural evolution during the electrocatalytic reaction, hindering the exploration of the catalytic mechanism.At the macrolevel, pertaining to catalysis-performance evaluation systems and devices, traditional laboratory settings employ a conventional three-electrode or two-electrode system to assess the catalytic performance of electrocatalysts. However, this approach does not accurately simulate hydrogen production under realistic industrial conditions, such as elevated temperatures (60-70 °C), high current densities exceeding 0.5 A cm-2, and flowing electrolytes. To address this limitation, it is crucial to develop testing equipment and methodologies that replicate the actual industrial conditions.In this Account, we propose a multiscale research framework for water electrolysis, spanning from microscale synthesis to macroscale scaled reactor design. Our approach focuses on the design and evaluation of high-performance HER/OER (hydrogen evolution reaction/oxygen evolution reaction) electrocatalysts, incorporating the following strategies: Leveraging principles of interface chemical engineering across various length scales (micrometers, nanometers, and atoms) enables the design of catalyst materials that enhance both activity and durability. This approach provides a comprehensive understanding of the intricate interplay between the catalyst structure and activity, implementing in situ/operando characterization techniques to monitor dynamic interfacial reactions and surface reconstruction processes. This facilitates a profound exploration of catalytic reaction mechanisms, offering insights into the catalyst's structural evolution during the electrocatalytic reaction. We construct a laboratory-scale membrane electrode assembly (MEA) electrochemical reactor capable of operating at high current densities (>1 A cm-2) to evaluate the electrocatalytic performance under simulated industrial conditions. This ensures objective and authentic assessments of the catalyst application potential. Throughout the following sections, we illustrate the application of interface chemical engineering on different length scales in designing diverse electrocatalyst materials. We rely on in situ characterization techniques to gain a profound understanding of the mechanisms behind the HER and OER. Additionally, we describe the development of both acidic and alkaline MEA electrochemical reactors to enhance the precision of electrocatalytic performance evaluation. Finally, we provide a concise overview of the challenges and opportunities in this field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
许问发布了新的文献求助10
刚刚
刚刚
IrisMessi发布了新的文献求助10
1秒前
李键刚完成签到 ,获得积分10
1秒前
章鱼完成签到,获得积分20
6秒前
我与论文不共戴天完成签到,获得积分10
6秒前
cctv18应助ybaby采纳,获得10
6秒前
kong完成签到 ,获得积分10
9秒前
包容的海豚完成签到 ,获得积分10
10秒前
12秒前
13秒前
15秒前
18秒前
李阳阳发布了新的文献求助10
20秒前
852应助许问采纳,获得10
20秒前
21秒前
sunwx完成签到,获得积分10
22秒前
23秒前
24秒前
研友_ngKqrn发布了新的文献求助10
25秒前
25秒前
雨中漫步应助lcm采纳,获得10
26秒前
娇气的书桃完成签到,获得积分10
26秒前
27秒前
xiaolanou发布了新的文献求助10
31秒前
31秒前
Yolo发布了新的文献求助10
31秒前
labern完成签到,获得积分10
32秒前
32秒前
33秒前
今后应助wch071采纳,获得10
33秒前
34秒前
labern发布了新的文献求助10
36秒前
章鱼发布了新的文献求助10
37秒前
XxxxxxENT完成签到,获得积分10
38秒前
38秒前
wwx发布了新的文献求助10
40秒前
啦啦啦啦啦完成签到 ,获得积分20
41秒前
年轻的代秋完成签到,获得积分10
42秒前
yufeifei6发布了新的文献求助30
44秒前
高分求助中
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 1000
Yuwu Song, Biographical Dictionary of the People's Republic of China 700
[Lambert-Eaton syndrome without calcium channel autoantibodies] 520
The three stars each: the Astrolabes and related texts 500
Revolutions 400
Diffusion in Solids: Key Topics in Materials Science and Engineering 400
Phase Diagrams: Key Topics in Materials Science and Engineering 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2449920
求助须知:如何正确求助?哪些是违规求助? 2124146
关于积分的说明 5404495
捐赠科研通 1852858
什么是DOI,文献DOI怎么找? 921430
版权声明 562233
科研通“疑难数据库(出版商)”最低求助积分说明 492923