Noncovalent hybridization of Fe single-atom with biochar for highly efficient peroxymonosulfate activation: Built-in electric field-driven radical and non-radical processes

化学 催化作用 共价键 电子转移 掺杂剂 激进的 电负性 离域电子 Atom(片上系统) 光化学 材料科学 兴奋剂 有机化学 计算机科学 嵌入式系统 光电子学
作者
Shu Fang,Yiyang He,Xiaochuang Cao,Yaru Li,Lin Gu,Wei Mao,Boyang Wang,Hanlin Zhang
出处
期刊:Journal of environmental chemical engineering [Elsevier BV]
卷期号:12 (3): 112584-112584 被引量:2
标识
DOI:10.1016/j.jece.2024.112584
摘要

A non-covalent hybridisation method was used to manipulate the electron transfer from BC to an iron monoatomic catalyst (SA Fe-N-C) using biochar (BC) as a dopant. By optimizing the mass proportion of BC to SA Fe-N-C during co-pyrolysis, the stack structure of two componants was successfully fabricated. The built-in electric field (BIEF) is induced by the defect position of graphite carbon structure in BC and the electron-withdrawing nitrogen atom in SA Fe-N-C. The electron transport road from BC to SA Fe-N-C was established by using the BIEF between the interfaces. As a result, the non-covalent stack of BC/SA Fe-N-C rendered a promising way in activating peroxymonosulfate (PMS), and meanwhile exhibited superior stability concerning their robust geometric skeleton. The degradation experiments showed that the degradation efficiency of the composite was increased to 91% compared with that of the pristine SA Fe-N-C (69%) at a extremely higher concentration of TC (20 mg/L). Based on theoretical calculations and in-situ detections, it was found that the PMS activation follows the route of generating radicals (SO4•–,•OH) and non-radical (1O2, Fe(V)=O). The presence of the BIEF accelerated the electron delocalization, driving the electrons transfer for Fe(III)/Fe(II) and Fe(V)=O/Fe(III) recycle. The present study offer a new pathway for the synergistic PMS activation by combing single atom catalysts and biochar.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
科研通AI5应助jj158采纳,获得10
1秒前
sweetsbt发布了新的文献求助10
2秒前
7秒前
fang发布了新的文献求助10
7秒前
10秒前
11秒前
隐形曼青应助sweetsbt采纳,获得10
12秒前
14秒前
jenningseastera应助xgx984采纳,获得10
15秒前
妙妙发布了新的文献求助30
16秒前
桐桐应助wenlong采纳,获得10
16秒前
19秒前
19秒前
A晨完成签到,获得积分10
20秒前
所所应助Capybara采纳,获得10
21秒前
丹曦发布了新的文献求助10
22秒前
科研通AI5应助survivaluu采纳,获得10
22秒前
顾矜应助wyb采纳,获得10
23秒前
23秒前
24秒前
24秒前
冰魂应助朴诗雅Yay采纳,获得10
25秒前
火火发布了新的文献求助10
25秒前
26秒前
nulinuli发布了新的文献求助10
28秒前
28秒前
具体问题具体分析完成签到,获得积分10
29秒前
29秒前
29秒前
xiaoyeken发布了新的文献求助10
29秒前
hh发布了新的文献求助10
29秒前
30秒前
在水一方应助satchzhao采纳,获得10
30秒前
31秒前
31秒前
31秒前
jj158发布了新的文献求助10
33秒前
A晨发布了新的文献求助10
34秒前
Cynthia发布了新的文献求助10
35秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781693
求助须知:如何正确求助?哪些是违规求助? 3327300
关于积分的说明 10230275
捐赠科研通 3042139
什么是DOI,文献DOI怎么找? 1669791
邀请新用户注册赠送积分活动 799374
科研通“疑难数据库(出版商)”最低求助积分说明 758792