已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Electric Field Induced Ion Migration and Property Tuning in Functional Oxides

电场 离子键合 化学物理 电解质 材料科学 载流子 氧化物 纳米技术 离子 电子 化学 光电子学 物理 物理化学 电极 有机化学 量子力学 冶金
作者
Muhammad Umer Fayaz,Qian Wang,Shixuan Liang,Hua Bai,Feng Pan,Cheng Song
出处
期刊:Accounts of materials research [American Chemical Society]
卷期号:5 (5): 648-660
标识
DOI:10.1021/accountsmr.4c00067
摘要

ConspectusThe manipulation of functional oxide materials' properties through energy-efficient means is of great importance in materials science. Electric field-driven ionic control of functional oxides presents a versatile and effective approach for tailoring material properties, including insulator–metal transitions, superconductivity, magnetism, and optical characteristics, through spin, orbit, charge, and lattice degrees of freedom. This approach introduces a dynamic means of tuning these properties, allowing for real-time adjustments through external stimuli such as electric fields. The ability to modify material characteristics through ionic means is promising for both scientific exploration and practical applications, owing to its energy efficiency and compatibility with room temperature operation. Traditionally, this was primarily explored for energy storage applications, but it has now found broad utility in optoelectronics, nanoelectronic memory, and computing.Controlling charge carriers is a pivotal aspect of advancing the electronic functionalities of oxide materials. The substantial accumulation of charge carriers via electric field-induced electric double layers at oxide–electrolyte interfaces prompts extremely large electric fields, leading to different phenomena such as chemical reactions, phase transitions, and magnetic ordering. The mechanisms involved in electric field-controlled ionic motion using ionic liquids and gels range from primarily electrostatic to completely electrochemical. The electrostatic effect involves the induction of electrons or holes, and ionic motion is specific to the electrolyte side of the interface. In contrast, the electrochemical effect involves ionic motion occurring on both sides of the interface and across it. Through the application of electric fields, the insertion or extraction of ions in functional oxide materials enables the control of various phases and properties. In the electrostatic mechanism, carrier density modulation is primarily driven by band bending, whereas the electrochemical mechanism can completely reshape electronic band structures due to exceptionally high carrier densities. The electrolyte nature and target material properties significantly influence both the electrostatic and electrochemical effects. Recent advancements in characterization techniques and theoretical simulations have improved our understanding of the gating mechanisms in various material systems.In this Account, we provide a concise summary of recent advancements in manipulating the properties of various transition metal oxide material systems using electrolyte-based ionic motion through an electric field. We begin by exploring the detailed mechanisms that underlie how electric field gating can bring about substantial changes in the material properties. These changes encompass alterations in crystal and electronic structures as well as modifications in electrical, optical, and magnetic properties. Additionally, we assess the potential applications of functional oxide devices made possible through these ionic control mechanisms, particularly their relevance to neuromorphic computing. Finally, we address the primary challenges in this field and suggest future research directions to further its progress.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
Anna发布了新的文献求助20
2秒前
野性的小松鼠完成签到 ,获得积分10
4秒前
平淡道天完成签到,获得积分10
7秒前
anhuiwsy完成签到 ,获得积分10
8秒前
9秒前
小宋爱睡觉完成签到 ,获得积分10
10秒前
我不是BOB完成签到,获得积分10
11秒前
tejing1158完成签到 ,获得积分10
13秒前
liwu完成签到 ,获得积分10
13秒前
tao完成签到 ,获得积分10
17秒前
cc完成签到 ,获得积分10
18秒前
21秒前
轻松尔蝶完成签到 ,获得积分10
23秒前
努力的淼淼完成签到 ,获得积分10
24秒前
24秒前
1874发布了新的文献求助10
24秒前
mawanyu完成签到 ,获得积分10
29秒前
顺心未来发布了新的文献求助10
30秒前
可千万不要躺平呀应助1874采纳,获得20
30秒前
ding应助TszPok采纳,获得10
31秒前
小西米完成签到 ,获得积分10
31秒前
33秒前
断罪残影完成签到,获得积分10
33秒前
诚心的小鸭子完成签到 ,获得积分10
36秒前
林利芳完成签到 ,获得积分10
36秒前
小二郎应助Anna采纳,获得10
37秒前
睡不醒的xx完成签到 ,获得积分10
38秒前
断罪残影发布了新的文献求助10
39秒前
1874完成签到,获得积分10
39秒前
neimy完成签到,获得积分10
39秒前
Jasper应助bk采纳,获得10
40秒前
呆瓜完成签到,获得积分10
42秒前
42秒前
碧蓝香芦完成签到 ,获得积分10
43秒前
xj应助neimy采纳,获得30
46秒前
48秒前
甜甜的以筠完成签到 ,获得积分10
50秒前
大意的皓轩完成签到 ,获得积分10
50秒前
54秒前
高分求助中
Africanfuturism: African Imaginings of Other Times, Spaces, and Worlds 3000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Exhibiting Chinese Art in Asia: Histories, Politics and Practices 700
1:500万中国海陆及邻区磁力异常图 600
相变热-动力学 520
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3897610
求助须知:如何正确求助?哪些是违规求助? 3441674
关于积分的说明 10822804
捐赠科研通 3166631
什么是DOI,文献DOI怎么找? 1749462
邀请新用户注册赠送积分活动 845335
科研通“疑难数据库(出版商)”最低求助积分说明 788635