Omni-Scan2BIM: A ready-to-use Scan2BIM approach based on vision foundation models for MEP scenes

分割 特征(语言学) 人工智能 一般化 计算机科学 班级(哲学) 计算机视觉 数学 语言学 数学分析 哲学
作者
Baoyi Wang,Zhengyi Chen,Mingkai Li,Qian Wang,Chao Yin,Jack C.P. Cheng
出处
期刊:Automation in Construction [Elsevier]
卷期号:162: 105384-105384 被引量:27
标识
DOI:10.1016/j.autcon.2024.105384
摘要

Mechanical, electrical, and plumbing (MEP) systems play a crucial role in providing various services and creating comfortable environments for urban residents. In order to enhance the management efficiency of these highly complex MEP systems, as-built building information models (BIMs) are being increasingly adopted worldwide. As-built BIMs accurately represent the actual conditions of facilities, making as-built BIM reconstruction significantly important for construction progress tracking, quality assurance, subsequent facility management, and renewal. To create as-built BIMs for MEP systems, laser scanners are widely utilized to capture high-resolution images and dense 3D measurements of the environment in a fast and highly accurate manner. Despite research efforts to automatically achieve "Scan-to-BIM," there are still gaps in applying current solutions to real-world scenarios. One of the major challenges are the limited generalization of existing methods to unseen scenarios without proper training or fine-tuning on custom-designed datasets. To address this issue, this study introduces Omni-Scan2BIM, a novel approach powered by large-scale pre-trained vision foundation models. Omni-Scan2BIM enables the recognition of MEP-related components with a single shot by integrating an all-purpose feature extraction model and a class-agnostic segmentation model. Firstly, given only a single image with a reference mask, the visual features are extracted for both the target component and the collected on-site images using the vision foundation model DINOv2. Secondly, through comparing pixel features, similarity maps are generated for the on-site images. The prior points for the class-agnostic segmentation model are sampled from the local maxima of the similarity map. Thirdly, Segment Anything Model (SAM) is leveraged to sequentially segment the target component. Finally, the target component is segmented out in 3D space based on the transformation matrix describing the spatial relationship between the 2D images and the 3D point clouds. Shape analysis and label fusion are conducted for as-built BIM modeling purpose. To validate the feasibility of the proposed technique, experiments were conducted using data collected from a real construction site in Hong Kong. The results demonstrate that the proposed Omni-Scan2BIM approach can easily generalize to unseen components with significantly improved accuracy and efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lulu完成签到 ,获得积分10
1秒前
RYK完成签到 ,获得积分10
1秒前
djdh完成签到 ,获得积分10
2秒前
当代完成签到 ,获得积分10
8秒前
标致的泥猴桃完成签到,获得积分10
9秒前
11秒前
zhangyuting完成签到 ,获得积分10
11秒前
量子星尘发布了新的文献求助10
14秒前
tulips完成签到 ,获得积分10
14秒前
健壮的花瓣完成签到 ,获得积分10
17秒前
少7一点8完成签到,获得积分10
20秒前
Ausna完成签到,获得积分10
22秒前
瘦瘦的铅笔完成签到 ,获得积分10
23秒前
哼哼啊嗯哼啊完成签到 ,获得积分10
24秒前
田田完成签到 ,获得积分10
24秒前
wanghao完成签到 ,获得积分10
25秒前
微糖完成签到,获得积分10
26秒前
LALALALA完成签到 ,获得积分10
26秒前
妍宝贝完成签到 ,获得积分10
29秒前
33秒前
量子星尘发布了新的文献求助10
33秒前
随风完成签到,获得积分10
34秒前
Ache_Xu完成签到 ,获得积分10
35秒前
量子星尘发布了新的文献求助10
37秒前
阿禹君发布了新的文献求助10
38秒前
ableyy完成签到,获得积分10
40秒前
hhr完成签到 ,获得积分10
40秒前
求助人员发布了新的文献求助50
41秒前
牛马完成签到 ,获得积分10
42秒前
Polylactic完成签到 ,获得积分10
49秒前
大块完成签到 ,获得积分10
50秒前
燕子完成签到,获得积分10
51秒前
52秒前
阿禹君完成签到,获得积分10
54秒前
小二郎应助王博林采纳,获得30
56秒前
量子星尘发布了新的文献求助10
57秒前
任性的思远完成签到 ,获得积分10
57秒前
HJJHJH发布了新的文献求助10
59秒前
hallie完成签到,获得积分10
59秒前
科研通AI6应助科研通管家采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Chemistry and Biochemistry: Research Progress Vol. 7 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5682116
求助须知:如何正确求助?哪些是违规求助? 5019320
关于积分的说明 15176755
捐赠科研通 4841622
什么是DOI,文献DOI怎么找? 2595403
邀请新用户注册赠送积分活动 1548452
关于科研通互助平台的介绍 1506547