Autophagy, an evolutionarily conserved intracellular recycling pathway, is essential for maintaining cellular homeostasis and enhancing plant resilience to a variety of abiotic stresses, including drought, salinity, extreme temperatures, and heavy metal toxicity. Be-yond its canonical role in nutrient recycling, autophagy is now recognized as a central regulator of stress signaling, hormonal crosstalk, and metabolic reprogramming. Here we synthesize the functions of autophagy under diverse abiotic stresses, highlighting its role in organellar quality control, metabolic adaptation, and stress-specific responses. We further discuss innovative strategies for enhancing crop resilience, including genome editing, integrative multi-omics analyses, and synthetic biology applications. Elucidating the autophagy regulatory network provides the foundation for designing next-generation crops that maintain high yield and resilience under climate-driven stress.