Glucose metabolism‐based signature predicts prognosis and immunotherapy strategies for colon adenocarcinoma

Lasso(编程语言) 基因签名 生物 DNA微阵列 接收机工作特性 错误发现率 计算生物学 比例危险模型 肿瘤科 生物信息学 基因 医学 内科学 基因表达 遗传学 计算机科学 万维网
作者
Zilong Bai,Chunyu Yan,Yuanhua Nie,Qingnuo Zeng,Longwen Xu,Shilong Wang,Dongmin Chang
出处
期刊:Journal of Gene Medicine [Wiley]
卷期号:26 (1) 被引量:4
标识
DOI:10.1002/jgm.3620
摘要

Abstract Background The global prevalence and metastasis rates of colon adenocarcinoma (COAD) are high, and therapeutic success is limited. Although previous research has primarily explored changes in gene phenotypes, the incidence rate of COAD remains unchanged. Metabolic reprogramming is a crucial aspect of cancer research and therapy. The present study aims to develop cluster and polygenic risk prediction models for COAD based on glucose metabolism pathways to assess the survival status of patients and potentially identify novel immunotherapy strategies and related therapeutic targets. Methods COAD‐specific data (including clinicopathological information and gene expression profiles) were sourced from The Cancer Genome Atlas (TCGA) and two Gene Expression Omnibus (GEO) datasets (GSE33113 and GSE39582). Gene sets related to glucose metabolism were obtained from the MSigDB database. The Gene Set Variation Analysis (GSVA) method was utilized to calculate pathway scores for glucose metabolism. The hclust function in R, part of the Pheatmap package, was used to establish a clustering system. The mutation characteristics of identified clusters were assessed via MOVICS software, and differentially expressed genes (DEGs) were filtered using limma software. Signature analysis was performed using the least absolute shrinkage and selection operator (LASSO) method. Survival curves, survival receiver operating characteristic (ROC) curves and multivariate Cox regression were analyzed to assess the efficacy and accuracy of the signature for prognostic prediction. The pRRophetic program was employed to predict drug sensitivity, with data sourced from the Genomics of Drug Sensitivity in Cancer (GDSC) database. Results Four COAD subgroups (i.e., C1, C2, C3 and C4) were identified based on glucose metabolism, with the C4 group having higher survival rates. These four clusters were bifurcated into a new Clust2 system (C1 + C2 + C3 and C4). In total, 2175 DEGs were obtained (C1 + C2 + C3 vs. C4), from which 139 prognosis‐related genes were identified. ROC curves predicting 1‐, 3‐ and 5‐year survival based on a signature containing nine genes showed an area under the curve greater than 0.7. Meanwhile, the study also found this feature to be an important predictor of prognosis in COAD and accordingly assessed the risk score, with higher risk scores being associated with a worse prognosis. The high‐risk and low‐risk groups responded differently to immunotherapy and chemotherapeutic agents, and there were differences in functional enrichment pathways. Conclusions This unique signature based on glucose metabolism may potentially provide a basis for predicting patient prognosis, biological characteristics and more effective immunotherapy strategies for COAD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
水菜泽子发布了新的文献求助10
刚刚
Daisy发布了新的文献求助10
2秒前
12366666发布了新的文献求助10
2秒前
苹果摇伽完成签到,获得积分10
3秒前
Orange应助xuxuxu采纳,获得10
7秒前
8秒前
9秒前
热情的采枫完成签到,获得积分10
9秒前
Etiquette发布了新的文献求助10
10秒前
liu完成签到,获得积分10
11秒前
赘婿应助科研通管家采纳,获得10
11秒前
小二郎应助科研通管家采纳,获得10
12秒前
kingwill应助科研通管家采纳,获得20
12秒前
iNk应助科研通管家采纳,获得20
12秒前
iNk应助科研通管家采纳,获得20
12秒前
小蘑菇应助科研通管家采纳,获得10
12秒前
记得接电话完成签到,获得积分10
13秒前
sube完成签到,获得积分10
13秒前
可爱的函函应助enen采纳,获得10
14秒前
14秒前
刘媛媛发布了新的文献求助10
15秒前
flowerliu发布了新的文献求助10
15秒前
心灵美复天完成签到,获得积分10
15秒前
凡`发布了新的文献求助10
18秒前
水菜泽子完成签到,获得积分10
20秒前
lx发布了新的文献求助10
20秒前
21秒前
YHY关注了科研通微信公众号
21秒前
ADcal完成签到 ,获得积分10
22秒前
24秒前
选民很头疼完成签到,获得积分10
25秒前
陈美宏发布了新的文献求助10
25秒前
吹梦西洲完成签到,获得积分10
25秒前
FashionBoy应助flowerliu采纳,获得10
27秒前
28秒前
刘媛媛完成签到,获得积分10
28秒前
pluto应助小瓶采纳,获得10
29秒前
优美若雁完成签到,获得积分10
29秒前
30秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Plutonium Handbook 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 680
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 540
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
Chinese Buddhist Monasteries: Their Plan and Its Function As a Setting for Buddhist Monastic Life 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4120642
求助须知:如何正确求助?哪些是违规求助? 3658796
关于积分的说明 11582141
捐赠科研通 3360374
什么是DOI,文献DOI怎么找? 1846356
邀请新用户注册赠送积分活动 911171
科研通“疑难数据库(出版商)”最低求助积分说明 827339