Green, Safe, and Reliable Synthesis of Bimetallic MOF‐808 Nanozymes With Enhanced Aqueous Stability and Reactivity for Biological Applications

双金属片 图书馆学 化学 金属 计算机科学 有机化学
作者
Charlotte Simms,Angelo Mullaliu,Francisco de Azambuja,Giuliana Aquilanti,Tatjana N. Parac‐Vogt
出处
期刊:Small [Wiley]
卷期号:20 (13) 被引量:1
标识
DOI:10.1002/smll.202307236
摘要

SmallEarly View 2307236 Research Article Green, Safe, and Reliable Synthesis of Bimetallic MOF-808 Nanozymes With Enhanced Aqueous Stability and Reactivity for Biological Applications Charlotte Simms, Charlotte Simms orcid.org/0000-0002-9334-9476 Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven, 3001 BelgiumSearch for more papers by this authorAngelo Mullaliu, Angelo Mullaliu orcid.org/0000-0003-2800-2836 Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven, 3001 BelgiumSearch for more papers by this authorFrancisco de de Azambuja, Corresponding Author Francisco de de Azambuja [email protected] orcid.org/0000-0002-5537-5411 Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven, 3001 Belgium E-mail: [email protected]Search for more papers by this authorGiuliana Aquilanti, Giuliana Aquilanti orcid.org/0000-0001-6683-2668 Elettra Sincrotrone, Trieste, Basovizza, 34149 ItalySearch for more papers by this authorTatjana N. Parac-Vogt, Corresponding Author Tatjana N. Parac-Vogt [email protected] orcid.org/0000-0002-6188-3957 Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven, 3001 Belgium E-mail: [email protected]Search for more papers by this author Charlotte Simms, Charlotte Simms orcid.org/0000-0002-9334-9476 Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven, 3001 BelgiumSearch for more papers by this authorAngelo Mullaliu, Angelo Mullaliu orcid.org/0000-0003-2800-2836 Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven, 3001 BelgiumSearch for more papers by this authorFrancisco de de Azambuja, Corresponding Author Francisco de de Azambuja [email protected] orcid.org/0000-0002-5537-5411 Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven, 3001 Belgium E-mail: [email protected]Search for more papers by this authorGiuliana Aquilanti, Giuliana Aquilanti orcid.org/0000-0001-6683-2668 Elettra Sincrotrone, Trieste, Basovizza, 34149 ItalySearch for more papers by this authorTatjana N. Parac-Vogt, Corresponding Author Tatjana N. Parac-Vogt [email protected] orcid.org/0000-0002-6188-3957 Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven, 3001 Belgium E-mail: [email protected]Search for more papers by this author First published: 16 November 2023 https://doi.org/10.1002/smll.202307236Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Abstract Bimetallic metal-organic frameworks (MOFs) are promising nanomaterials whose reactivity towards biomolecules remains challenging due to issues related to synthesis, stability, control over metal oxidation state, phase purity, and atomic level characterization. Here, these shortcomings are rationally addressed through development of a synthesis of mixed metal Zr/Ce-MOFs in aqueous environment, overcoming significant hurdles in the development of MOF nanozymes, sufficiently stable on biologically relevant conditions. Specifically, a green and safe synthesis of Zr/Ce-MOF-808 is reported in water/acetic acid mixture which affords remarkably water-stable materials with reliable nanozymatic reactivity, including MOFs with a high Ce content previously reported to be unstable in water. The new materials outperform analogous bimetallic MOF nanozymes, showcasing that rational synthesis modifications could impart outstanding improvements. Further, atomic-level characterization by X-ray Absorption Fine Structure (XAFS) and X-ray Diffraction (XRD) confirmed superior nanozymes arise from differences in the synthetic method, which results in aqueous stable materials, and Ce incorporation, which perturbs the ligand exchange dynamics of the material, and could ultimately be used to fine tune the intrinsic MOF reactivity. Similar rational strategies which leverage metals in a synergistic manner should enable other water-stable bimetallic MOF nanozymes able to surpass existing ones, laying the path for varied biotechnological applications. Conflict of Interest The authors declare no conflict of interest. Open Research Data Availability Statement The data that support the findings of this study are available from the corresponding author upon reasonable request. Supporting Information Filename Description smll202307236-sup-0001-SuppMat.pdf2.5 MB Supporting Information Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article. References 1L. Lauková, B. Konecná, L. Janovicová, B. Vlková, P. Celec, Biomolecules 2020, 10, 2. 10.3390/biom10071036 Google Scholar 2Á. Bódi, G. Kaslik, I. Venekei, L. Gráf, Eur. J. Biochem. 2001, 268, 6238. 10.1046/j.0014-2956.2001.02578.x CASPubMedWeb of Science®Google Scholar 3E. Vandermarliere, M. Mueller, L. Martens, Mass Spectromet. Rev. 2013, 32, 453. 10.1002/mas.21376 CASPubMedWeb of Science®Google Scholar 4K. Saeki, K. Ozaki, T. Kobayashi, S. Ito, J. Biosci. Bioeng. 2007, 103, 501. 10.1263/jbb.103.501 CASPubMedWeb of Science®Google Scholar 5A. Zaks, Curr. Opin. Chem. Biol. 2001, 5, 130. 10.1016/S1367-5931(00)00181-2 CASPubMedWeb of Science®Google Scholar 6Y. Huang, J. Ren, X. Qu, Chem. Rev. 2019, 119, 4357. 10.1021/acs.chemrev.8b00672 CASPubMedWeb of Science®Google Scholar 7M. Mon, R. Bruno, S. Sanz-Navarro, C. Negro, J. Ferrando-Soria, L. Bartella, L. Di Donna, M. Prejanò, T. Marino, A. Leyva-Pérez, D. Armentano, E. Pardo, Nat. Commun. 2020, 11, 3080. 10.1038/s41467-020-16699-3 CASPubMedWeb of Science®Google Scholar 8X.-Y. Zheng, J. Xie, X.-J. Kong, L.-S. Long, L.-S. Zheng, Coord. Chem. Rev. 2019, 378, 222. 10.1016/j.ccr.2017.10.023 CASWeb of Science®Google Scholar 9M. Lammert, M. T. Wharmby, S. Smolders, B. Bueken, A. Lieb, K. A. Lomachenko, D. D. Vos, N. Stock, Chem. Commun. 2015, 51, 12578. 10.1039/C5CC02606G CASPubMedWeb of Science®Google Scholar 10T. Wu, S. Huang, H. Yang, N. Ye, L. Tong, G. Chen, Q. Zhou, G. Ouyang, ACS Mater. Lett. 2022, 4, 751. 10.1021/acsmaterialslett.2c00075 CASGoogle Scholar 11H. G. T. Ly, G. Fu, F. De Azambuja, D. De Vos, T. N. Parac-Vogt, ACS Appl. Nano Mater. 2020, 3, 8931. 10.1021/acsanm.0c01688 CASWeb of Science®Google Scholar 12H. G. T. Ly, G. Fu, A. Kondinski, B. Bueken, D. De Vos, T. N. Parac-Vogt, J. Am. Chem. Soc. 2018, 140, 6325. 10.1021/jacs.8b01902 CASPubMedWeb of Science®Google Scholar 13S. Dai, C. Simms, I. Dovgaliuk, G. Patriarche, A. Tissot, T. N. Parac-Vogt, C. Serre, Chem. Mater. 2021, 33, 7057. 10.1021/acs.chemmater.1c02174 CASWeb of Science®Google Scholar 14C. Simms, F. De Azambuja, T. N. Parac-Vogt, Chem. - Eur. J. 2021, 27, 17230. 10.1002/chem.202103102 CASPubMedWeb of Science®Google Scholar 15A. Loosen, F. de Azambuja, S. Smolders, J. Moons, C. Simms, D. De Vos, T. N. Parac-Vogt, Chem. Sci. 2020, 11, 6662. 10.1039/D0SC02136A CASPubMedWeb of Science®Google Scholar 16S. Wang, H. G. T. Ly, M. Wahiduzzaman, C. Simms, I. Dovgaliuk, A. Tissot, G. Maurin, T. N. Parac-Vogt, C. Serre, Nat. Commun. 2022, 13, 1284. 10.1038/s41467-022-28886-5 CASPubMedWeb of Science®Google Scholar 17F. D. Azambuja, J. Moons, T. N. Parac-Vogt, Acc. Chem. Res. 2021, 54, 1673. 10.1021/acs.accounts.0c00666 CASPubMedWeb of Science®Google Scholar 18Z. Fang, B. Bueken, D. E. De Vos, R. A. Fischer, Angew. Chem., Int. Ed. 2015, 54, 7234. 10.1002/anie.201411540 CASPubMedWeb of Science®Google Scholar 19O. A. Ejegbavwo, A. A. Berseneva, C. R. Martin, G. A. Leith, S. Pandey, A. J. Brandt, K. C. Park, A. Mathur, S. Farzandh, V. V. Klepov, B. J. Heiser, M. Chandrashekhar, S. G. Karakalos, M. D. Smith, S. R. Phillpot, S. Garashchuk, D. A. Chen, N. B. Shustova, Chem. Sci. 2020, 11, 7379. 10.1039/D0SC03053H CASPubMedWeb of Science®Google Scholar 20C. López-García, S. Canossa, J. Hadermann, G. Gorni, F. E. Oropeza, V. A. De La Peña O'Shea, M. Iglesias, M. Angeles Monge, E. Gutiérrez-Puebla, F. Gándara, J. Am. Chem. Soc. 2022, 144, 16262. 10.1021/jacs.2c06142 CASPubMedWeb of Science®Google Scholar 21J. Castells-Gil, N. M. Padial, N. Almora-Barrios, J. Albero, A. R. Ruiz-Salvador, J. González-Platas, H. García, C. Marti-Gastaldo, Angew. Chem. Int. Ed. Engl. 2018, 57, 8453. 10.1002/anie.201802089 CASPubMedWeb of Science®Google Scholar 22J. Castells-Gil, S. Ould-Chikh, A. Ramírez, R. Ahmad, G. Prieto, A. R. Gómez, L. Garzón-Tovar, S. Telalovic, L. Liu, A. Genovese, N. M. Padial, A. Aguilar-Tapia, P. Bordet, L. Cavallo, C. Martí-Gastaldo, J. Gascon, Chem. Catal. 2021, 1, 364. 10.1016/j.checat.2021.03.010 CASGoogle Scholar 23Z. Chen, Z. Chen, O. K. Farha, K. W. Chapman, J. Am. Chem. Soc. 2021, 143, 8976. 10.1021/jacs.1c04269 CASPubMedWeb of Science®Google Scholar 24Y. Shan, G. Zhang, Y. Shi, H. Pang, Cell Rep. Phys. Sci. 2023, 4, 101301. 10.1016/j.xcrp.2023.101301 CASGoogle Scholar 25A. M. Rasero-Almansa, M. Iglesias, F. Sánchez, RSC Adv. 2016, 6, 106790. 10.1039/C6RA23143H CASWeb of Science®Google Scholar 26W. Hong, M. Kitta, Q. Xu, Small Methods 2018, 2, 1800214. 10.1002/smtd.201800214 Web of Science®Google Scholar 27Y. Zhou, L. Yu, Y. Gao, J. Wu, W. Dai, Ind. Eng. Chem. Res. 2019, 58, 19202. 10.1021/acs.iecr.9b03815 CASWeb of Science®Google Scholar 28S.-H. Guo, X.-J. Qi, H.-M. Zhou, J. Zhou, X.-H. Wang, M. Dong, X. Zhao, C.-Y. Sun, X.-L. Wang, Z.-M. Su, J. Mater. Chem. A 2020, 8, 11712. 10.1039/D0TA00205D CASWeb of Science®Google Scholar 29S. M. El-Sheikh, D. I. Osman, O. I. Ali, W. G. Shousha, M. A. Shoeib, S. M. Shawky, S. M. Sheta, Appl. Surf. Sci. 2021, 562, 150202. 10.1016/j.apsusc.2021.150202 CASWeb of Science®Google Scholar 30R. Coeck, A. De Bruyne, T. Borremans, W. Stuyck, D. E. De Vos, ACS Sustain. Chem. Eng. 2022, 10, 3048. 10.1021/acssuschemeng.1c08538 CASWeb of Science®Google Scholar 31A. Rubio-Gaspar, S. Navalón, S. Tatay, F. G. Cirujano, C. Fernández-Conde, N. M. Padial, C. Martí-Gastaldo, J. Am. Chem. Soc. 2023, 145, 3855. 10.1021/jacs.2c12718 CASPubMedWeb of Science®Google Scholar 32C. K. Brozek, M. Dinca, J. Am. Chem. Soc. 2013, 135, 12886 10.1021/ja4064475 CASPubMedWeb of Science®Google Scholar 33J. Castells-Gil, M. Padial, N. Almora-Barrios, R. Gil-San-Millán, M. Romero-Ángel, V. Torres, I. Silva, B. C. J. Vieira, J. C. Waerenborgh, J. Jagiello, J. A. R. Navarro, S. Tatay, C. Martí-Gastaldo, Chem 2020, 6, 3118. 10.1016/j.chempr.2020.09.002 CASWeb of Science®Google Scholar 34Z. Ji, T. Li, O. M. Yaghi, Science 2020, 369, 674. 10.1126/science.aaz4304 CASPubMedWeb of Science®Google Scholar 35S. Abednatanzi, P. Gohari Derakhshandeh, H. Depauw, F.-X. Coudert, H. Vrielinck, P. Van Der Voort, K Leus, Chem. Soc. Rev. 2019, 48, 2535. 10.1039/C8CS00337H CASPubMedWeb of Science®Google Scholar 36M. Y. Masoomi, A. Morsali, A. Dhakshinamoorthy, H. Garcia, Angew. Chem., Int. Ed. 2019, 58, 15188. 10.1002/anie.201902229 CASPubMedWeb of Science®Google Scholar 37T. Takarada, M. Yashiro, M. Komiyama, Chemistry 2000, 6, 3906. 10.1002/1521-3765(20001103)6:21<3906::AID-CHEM3906>3.0.CO;2-J CASPubMedWeb of Science®Google Scholar 38C. Simms, A. Mullaliu, S. Swinnen, F. de Azambuja, T. N. Parac-Vogt, Mol. Syst. Des. Eng. 2023, 8, 270. 10.1039/D2ME00213B CASWeb of Science®Google Scholar 39M. Lammert, C. Glissmann, N. Stock, Dalton Trans. 2017, 46, 2425. 10.1039/C7DT00259A CASPubMedWeb of Science®Google Scholar 40M. Lammert, C. Glißmann, H. Reinsch, N. Stock, Cryst. Growth Des. 2017, 17, 1125. 10.1021/acs.cgd.6b01512 CASWeb of Science®Google Scholar 41A. Loosen, C. Simms, S. Smolders, D. E. De Vos, T. N. Parac-Vogt, ACS Appl. Nano Mater. 2021, 4, 5748 10.1021/acsanm.1c00546 CASWeb of Science®Google Scholar 42H. Furukawa, F. Gandara, Y. B. Zhang, J. Jiang, W. L. Queen, M. R. Hudson, O. M. Yaghi, J. Am. Chem. Soc. 2014, 136, 4369. 10.1021/ja500330a CASPubMedWeb of Science®Google Scholar 43T. Johnson, M. Fejzic, D. Tee, S. Bennett, Org. Process Res. Dev. 2021, 25, 754. 10.1021/acs.oprd.0c00353 CASWeb of Science®Google Scholar 44N. Heidenreich, S. Waitschat, H. Reinsch, Z. Anorg. Allg. Chem. 2018, 644, 1826. 10.1002/zaac.201800354 CASWeb of Science®Google Scholar 45M. Ronda-Lloret, I. Pellicer-Carreño, A. Grau-Atienza, R. Boada, S. Diaz-Moreno, J. Narciso-Romero, J. C. Serrano-Ruiz, A. Sepúlveda-Escribano, E. V. Ramos-Fernandez, Adv. Funct. Mater. 2021, 31, 2102582. 10.1002/adfm.202102582 CASWeb of Science®Google Scholar 46H. Reinsch, S. Waitschat, S. M. Chavan, K. P. Lillerud, N. Stock, Eur. J. Inorg. Chem. 2016, 2016, 4490. 10.1002/ejic.201600295 CASWeb of Science®Google Scholar 47K. A. Lomachenko, J. Jacobsen, A. L. Bugaev, C. Atzori, F. Bonino, S. Bordiga, N. Stock, C. Lamberti, J. Am. Chem. Soc. 2018, 140, 17379. 10.1021/jacs.8b10343 CASPubMedWeb of Science®Google Scholar 48C. Atzori, K. A. Lomachenko, J. Jacobsen, N. Stock, A. Damin, F. Bonino, S. Bordiga, Dalton Trans. 2020, 49, 5794. 10.1039/D0DT01023E CASPubMedWeb of Science®Google Scholar 49K. A. Lomachenko, J. Jacobsen, A. L. Bugaev, C. Atzori, F. Bonino, S. Bordiga, N. Stock, C. Lamberti, J. Am. Chem. Soc. 2018, 140, 17379. 10.1021/jacs.8b10343 CASPubMedWeb of Science®Google Scholar 50J. C. Woicik, Surf. Sci. Rep. 2014, 69, 38. 10.1016/j.surfrep.2013.12.002 CASWeb of Science®Google Scholar 51J. A. Zamora Zeledon, M. B. Stevens, G. Gunasooriya, A. Gallo, A. T. Landers, M. E. Kreider, C. Hahn, J. K. Norskov, T. F. Jaramillo, Nat. Commun. 2021, 12, 620. 10.1038/s41467-021-20923-z CASPubMedWeb of Science®Google Scholar 52E. Geravand, F. Farzaneh, R. Gil-San-Millan, F. J. Carmona, J. A. R. Navarro, Inorg. Chem. 2020, 59, 16160. 10.1021/acs.inorgchem.0c01434 CASPubMedWeb of Science®Google Scholar 53A. Radzicka, R. Wolfenden, J. Am. Chem. Soc. 1996, 118, 6105. 10.1021/ja954077c CASWeb of Science®Google Scholar 54O. L. Tavano, J. Mol. Catal. B: Enzym. 2013, 90, 1. 10.1016/j.molcatb.2013.01.011 CASWeb of Science®Google Scholar 55Y. Zhang, B. R. Fonslow, B. Shan, M. C. Baek, J. R. Yates, Chem. Rev. 2013, 113, 2343. 10.1021/cr3003533 CASPubMedWeb of Science®Google Scholar 56F. Azambuja, J. Moons, T. N. Parac-Vogt, Acc. Chem. Res. 2021, 54, 1673. 10.1021/acs.accounts.0c00666 CASPubMedWeb of Science®Google Scholar 57C. Simms, A. Mullaliu, S. Swinnen, F. de Azambuja, T. N. Parac-Vogt, Mol. Syst. Des. Eng. 2023, 8, 270. 10.1039/D2ME00213B CASWeb of Science®Google Scholar 58F. de Azambuja, T. N. Parac-Vogt, ACS Catal. 2019, 9, 10245. 10.1021/acscatal.9b03415 Web of Science®Google Scholar 59F. de Azambuja, J. Lenie, T. N. Parac-Vogt, ACS Catal. 2020, 11, 271. 10.1021/acscatal.0c04189 Web of Science®Google Scholar 60F. de Azambuja, A. Loosen, D. Conic, M. van den Besselaar, J. N. Harvey, T. N. Parac-Vogt, ACS Catal. 2021, 11, 7647. 10.1021/acscatal.1c01782 Web of Science®Google Scholar 61Y. Zhang, F. de Azambuja, T. N. Parac-Vogt, Catal. Sci. Technol. 2022, 12, 3190. 10.1039/D2CY00421F CASWeb of Science®Google Scholar 62Y. Zhang, I. Y. Kokculer,, F. de Azambuja, T. N. Parac-Vogt, Catal. Sci. Technol. 2023, 13, 100. 10.1039/D2CY01706G CASWeb of Science®Google Scholar 63T. Islamoglu, D. Ray, P. Li, M. B. Majewski, I. Akpinar, X. Zhang, C. J. Cramer, L. Gagliardi, O. K. Farha, Inorg. Chem. 2018, 57, 13246. 10.1021/acs.inorgchem.8b01748 CASPubMedWeb of Science®Google Scholar 64J. Lyu, X. Zhang, P. Li, X. Wang, C. T. Buru, P. Bai, X. Guo, O. K. Farha, Chem. Mater. 2019, 31, 4166. 10.1021/acs.chemmater.9b00960 CASWeb of Science®Google Scholar Early ViewOnline Version of Record before inclusion in an issue2307236 ReferencesRelatedInformation
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
Yg完成签到,获得积分20
2秒前
2秒前
3秒前
可靠发布了新的文献求助10
4秒前
yuyu应助跳跃凡桃采纳,获得10
6秒前
夜阑风静发布了新的文献求助10
6秒前
6秒前
毛慢慢发布了新的文献求助10
7秒前
7秒前
8秒前
水煮南瓜头完成签到,获得积分10
9秒前
Yg发布了新的文献求助10
9秒前
觅云应助善良的静曼采纳,获得10
10秒前
夜阑风静完成签到,获得积分10
13秒前
科目三应助Baekhyun采纳,获得10
14秒前
17秒前
17秒前
17秒前
张泽崇应助毛慢慢采纳,获得10
20秒前
20秒前
打打应助熊二浪采纳,获得10
20秒前
柳寄柔完成签到,获得积分10
21秒前
22秒前
Lucas应助tgd采纳,获得30
24秒前
zh完成签到,获得积分10
25秒前
Veronica Mew完成签到 ,获得积分10
25秒前
25秒前
26秒前
27秒前
Jasper应助TT2022采纳,获得10
27秒前
27秒前
Y-CityU完成签到,获得积分10
28秒前
29秒前
熊二浪发布了新的文献求助10
29秒前
Xiao10105830发布了新的文献求助10
31秒前
慧19960418发布了新的文献求助10
31秒前
32秒前
33秒前
高分求助中
The three stars each : the Astrolabes and related texts 1070
Manual of Clinical Microbiology, 4 Volume Set (ASM Books) 13th Edition 1000
Sport in der Antike 800
Aspect and Predication: The Semantics of Argument Structure 666
De arte gymnastica. The art of gymnastics 600
少脉山油柑叶的化学成分研究 530
Sport in der Antike Hardcover – March 1, 2015 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2408764
求助须知:如何正确求助?哪些是违规求助? 2104819
关于积分的说明 5315218
捐赠科研通 1832394
什么是DOI,文献DOI怎么找? 913047
版权声明 560733
科研通“疑难数据库(出版商)”最低求助积分说明 488236