Hydrogen storage and capacity degradation mechanism of superlattice La-Y-Ni-based hydrogen storage alloy

氢气储存 电化学 合金 超晶格 材料科学 化学计量学 容量损失 化学工程 降级(电信) 储能 固溶体 无定形固体 相(物质) 化学 冶金 结晶学 热力学 物理化学 电极 计算机科学 光电子学 物理 有机化学 电信 功率(物理) 工程类
作者
Shujuan Zhou,Li Wang,Baoquan Li,Xu Zhang,Xiangyang He,Wei Xiong,Hongyuan Han,Yuyuan Zhao,Jin Xu,Huizhong Yan
出处
期刊:Journal of energy storage [Elsevier BV]
卷期号:74: 109550-109550 被引量:2
标识
DOI:10.1016/j.est.2023.109550
摘要

New La-Y-Ni-based hydrogen storage alloys exhibit key technological advantages for energy storage; however, several challenges arise because of their insufficient cycle life. In this study, we design a non-stoichiometric structure and present a scheme for obtaining a stable superlattice structure by optimizing multi-component elements and understanding the structural evolution and anti-degradation mechanism for increasing the cycle life. The rationality of the scheme is verified by designing AB3.67-type La1.4Ce0.5Y4.1-xSmxNi20Mn1.2Al0.8 (x = 0, 0.2, 0.3, and 0.4) alloys. Substituting Y with an appropriate amount of Sm reduces capacity degradationin both in electrochemistry and solid/H2 reactions because it effectively inhibits the transition of the stable phase and this regulation reduces the mismatch of subunits in the Gd2Co7-type phase, especially the control [A2B4] subunit instead of the [AB5] subunit. Further, a capacity degradation mechanism is illustrated and the entire process is divided into three stages. The corrosion resistance of synergistic elements in the first stage (<100 cycles) of the electrochemical reaction is a decisive factor controlling the long-term cyclic stability of alloys. Although the amorphous phase in the solid-H2 reaction is the main factor responsible for decay, the La1.4Ce0.5Y3.8Sm0.3Ni20Mn1.2Al0.8 alloy shows better electrochemical properties, with a maximum discharge capacity, H2-absorption capacity, and capacity retention rate S100 of 377.7 mAh g−1, 1.64 wt%, and 90.9 %, respectively. After 500 cycles, the capacity retention rate is enhanced from 42 % to 60.9 %. The proposed scheme is expected to prom.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
狂野的河马完成签到,获得积分10
刚刚
酷波er应助科研通管家采纳,获得10
刚刚
刚刚
刚刚
ZONG发布了新的文献求助10
1秒前
闳楠发布了新的文献求助10
1秒前
勤奋的松鼠完成签到,获得积分10
1秒前
迷人的学术妲己完成签到,获得积分10
1秒前
1秒前
科研通AI5应助里耶熊采纳,获得30
2秒前
天天快乐应助qq.com采纳,获得10
2秒前
背后的鹭洋完成签到,获得积分10
2秒前
小梁发布了新的文献求助10
2秒前
2秒前
思源应助sharon采纳,获得10
2秒前
过时的又槐完成签到,获得积分10
2秒前
风趣的鸭子完成签到,获得积分10
3秒前
淡淡的发卡完成签到,获得积分10
3秒前
3秒前
手残症完成签到,获得积分10
3秒前
3秒前
3秒前
Jasper应助故意的皮皮虾采纳,获得10
3秒前
暗黑同学完成签到,获得积分10
4秒前
坚定惜梦完成签到,获得积分10
4秒前
ZZ完成签到,获得积分10
4秒前
研友_VZG7GZ应助985博士采纳,获得10
5秒前
木之木完成签到,获得积分10
5秒前
luodd完成签到 ,获得积分10
5秒前
一棵完成签到,获得积分10
5秒前
6秒前
G1997完成签到 ,获得积分10
6秒前
我爱科研完成签到,获得积分10
6秒前
6秒前
7秒前
zz发布了新的文献求助10
7秒前
Qq完成签到,获得积分20
8秒前
子心完成签到,获得积分10
8秒前
111111完成签到,获得积分10
8秒前
shulei完成签到,获得积分20
8秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
System of systems: When services and products become indistinguishable 300
How to carry out the process of manufacturing servitization: A case study of the red collar group 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3812110
求助须知:如何正确求助?哪些是违规求助? 3356551
关于积分的说明 10382609
捐赠科研通 3073683
什么是DOI,文献DOI怎么找? 1688394
邀请新用户注册赠送积分活动 812128
科研通“疑难数据库(出版商)”最低求助积分说明 766960