Unsupervised Domain Factorization Network for Thick Cloud Removal of Multitemporal Remotely Sensed Images

计算机科学 云计算 因子(编程语言) 高光谱成像 遥感 空间分析 人工智能 地质学 操作系统 程序设计语言
作者
Jian-Li Wang,Xi-Le Zhao,Heng-Chao Li,Ke-Xiang Cao,Jiaqing Miao,Ting‐Zhu Huang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-12 被引量:9
标识
DOI:10.1109/tgrs.2023.3303169
摘要

Cloud removal is an important task in the remotely sensed images (RSIs) processing, which is beneficial for downstream applications, such as unmixing, fusion, and target detection. Multi-temporal remotely sensed images (MRSIs), which contains the abundant spatial-spectral-temporal (SST) information, potentially bring the new opportunities for cloud removal. However, how to effectively and efficiently explore the rich information of MRSIs remains a challenge. Inspired by the low-rankness of MRSIs, we propose an Unsupervised Domain Factorization Network (UnDFN) for thick cloud removal, which allows us to effectively and efficiently exploit the rich SST information of MRSIs. In UnDFN framework, we first factorize RSI for each time node of MRSIs into its corresponding spatial factor and spectral factor. Due to the powerful expressive ability, the untrained neural networks are leveraged to faithfully capture the spatial and spectral factors. Especially, motivated by the low-rankness of the concatenated spatial factors of all time nodes, a low-rank spatial factor module is elaborately designed to effectively and efficiently capture the spatial factors of all time nodes as compared with separately using networks to capture spatial factors for each time node. Extensive experiments on simulated and real MRSIs of different satellites (including Sentinel-2 and Landsat-8) substantiate that the proposed UnDFN achieves state-of-the-art performance in thick cloud removal compared to other methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天真千易发布了新的文献求助10
1秒前
慕青应助涵泽采纳,获得10
3秒前
zxxx完成签到,获得积分10
4秒前
热心市民应助可爱山彤采纳,获得10
6秒前
粗心的雪碧完成签到,获得积分10
7秒前
8秒前
10秒前
从容芮应助Wang0102采纳,获得10
13秒前
科研通AI5应助buciying采纳,获得10
14秒前
14秒前
wang发布了新的文献求助210
14秒前
裴依菲完成签到,获得积分10
15秒前
wise111发布了新的文献求助10
15秒前
俭朴依白完成签到,获得积分10
16秒前
小狗说好运来完成签到 ,获得积分10
16秒前
17秒前
JamesPei应助天真千易采纳,获得20
17秒前
林思完成签到,获得积分10
19秒前
涵泽发布了新的文献求助10
19秒前
科研通AI2S应助jlwang采纳,获得10
19秒前
20秒前
20秒前
kuiuLinvk发布了新的文献求助30
22秒前
Orange应助qqy采纳,获得10
26秒前
JIANG发布了新的文献求助30
26秒前
吴大语完成签到,获得积分10
27秒前
27秒前
29秒前
希望天下0贩的0应助涵泽采纳,获得10
30秒前
科研通AI5应助可爱山彤采纳,获得10
31秒前
蜡笔小z发布了新的文献求助10
31秒前
32秒前
ruby30完成签到,获得积分10
32秒前
kuiuLinvk完成签到,获得积分10
32秒前
顾矜应助cocoa345采纳,获得10
32秒前
科研通AI5应助小豆包采纳,获得10
33秒前
35秒前
丘比特应助yshog采纳,获得10
35秒前
XL完成签到,获得积分10
35秒前
buciying发布了新的文献求助10
36秒前
高分求助中
Basic Discrete Mathematics 1000
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799181
求助须知:如何正确求助?哪些是违规求助? 3344881
关于积分的说明 10322160
捐赠科研通 3061343
什么是DOI,文献DOI怎么找? 1680214
邀请新用户注册赠送积分活动 806919
科研通“疑难数据库(出版商)”最低求助积分说明 763451