Machine learning-based model for accurate identification of druggable proteins using light extreme gradient boosting

可药性 特征选择 机器学习 人工智能 随机森林 计算机科学 Boosting(机器学习) 梯度升压 鉴定(生物学) 药物发现 计算生物学 生物信息学 生物 生物化学 植物 基因
作者
Omar Alghushairy,Farman Ali,Wajdi Alghamdi,Majdi Khalid,Raed Alsini,Othman Asiry
出处
期刊:Journal of Biomolecular Structure & Dynamics [Taylor & Francis]
卷期号:: 1-12 被引量:1
标识
DOI:10.1080/07391102.2023.2269280
摘要

The identification of druggable proteins (DPs) is significant for the development of new drugs, personalized medicine, understanding of disease mechanisms, drug repurposing, and economic benefits. By identifying new druggable targets, researchers can develop new therapies for a range of diseases, leading to better patient outcomes. Identification of DPs by machine learning strategies is more efficient and cost-effective than conventional methods. In this study, a computational predictor, namely Drug-LXGB, is introduced to enhance the identification of DPs. Features are discovered by composition, transition, and distribution (CTD), composition of K-spaced amino acid pair (CKSAAP), pseudo-position-specific scoring matrix (PsePSSM), and a novel descriptor, called multi-block pseudo amino acid composition (MB-PseAAC). The dimensions of CTD, CKSAAP, PsePSSM, and MB-PseAAC are integrated and utilized the sequential forward selection as feature selection algorithm. The best characteristics are provided by random forest, extreme gradient boosting, and light eXtreme gradient boosting (LXGB). The predictive analysis of these learning methods is measured via 10-fold cross-validation. The LXGB-based model secures the highest results than other existing predictors. Our novel protocol will perform an active role in designing novel drugs and would be fruitful to explore the potential target. This study will help better to capture a more universal view of a potential target.Communicated by Ramaswamy H. Sarma.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
k sir完成签到,获得积分10
刚刚
燕子完成签到,获得积分10
3秒前
拾壹完成签到,获得积分10
5秒前
pjxxx完成签到 ,获得积分10
5秒前
小糊涂仙儿完成签到 ,获得积分10
6秒前
Tici完成签到,获得积分10
11秒前
奔铂儿钯完成签到,获得积分10
13秒前
快乐冰之完成签到 ,获得积分10
16秒前
Rgly完成签到 ,获得积分10
19秒前
21秒前
22秒前
小居很哇塞完成签到,获得积分10
33秒前
谭平完成签到 ,获得积分10
37秒前
酷酷的王完成签到 ,获得积分10
39秒前
47秒前
jkaaa完成签到,获得积分10
48秒前
一区种子选手完成签到,获得积分10
50秒前
52秒前
跳跃凡桃完成签到 ,获得积分10
52秒前
龙王爱吃糖完成签到 ,获得积分10
53秒前
胜天半子完成签到 ,获得积分10
58秒前
58秒前
不过尔尔完成签到 ,获得积分10
1分钟前
LiangRen完成签到 ,获得积分10
1分钟前
闻屿完成签到,获得积分10
1分钟前
cdercder应助科研通管家采纳,获得10
1分钟前
orixero应助科研通管家采纳,获得10
1分钟前
笑林完成签到 ,获得积分10
1分钟前
CLTTTt完成签到,获得积分10
1分钟前
1分钟前
TTTHANKS完成签到 ,获得积分10
1分钟前
手握灵珠常奋笔完成签到,获得积分10
1分钟前
余味应助滕皓轩采纳,获得10
1分钟前
虚幻元风完成签到 ,获得积分10
1分钟前
我爱学习完成签到,获得积分10
1分钟前
优雅的雁凡完成签到,获得积分10
1分钟前
1分钟前
eternal_dreams完成签到 ,获得积分10
1分钟前
zw完成签到,获得积分10
1分钟前
1分钟前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3798555
求助须知:如何正确求助?哪些是违规求助? 3344090
关于积分的说明 10318508
捐赠科研通 3060649
什么是DOI,文献DOI怎么找? 1679753
邀请新用户注册赠送积分活动 806769
科研通“疑难数据库(出版商)”最低求助积分说明 763353