Spatio-Temporal Memory Augmented Multi-Level Attention Network for Traffic Prediction

计算机科学 航程(航空) 记忆 期限(时间) 网格 数据挖掘 空间分析 编码 人工智能 基因 地质学 遥感 生物化学 复合材料 量子力学 几何学 物理 数学 数学教育 材料科学 化学
作者
Yan Liu,Bin Guo,Jingxiang Meng,Daqing Zhang,Zhiwen Yu
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [Institute of Electrical and Electronics Engineers]
卷期号:36 (6): 2643-2658 被引量:10
标识
DOI:10.1109/tkde.2023.3322405
摘要

Traffic prediction is one of the fundamental spatio-temporal prediction tasks in urban computing, which is of great significance to a wide range of applications, e.g., traffic controlling, vehicle scheduling, etc. Recently, with the expansion of the city and the development of public transportation, long-range and long-term spatio-temporal correlations play a more important role in traffic prediction. However, it is challenging to model long-range spatial dependencies and long-term temporal dependencies simultaneously in two aspects: 1) complex influential factors, including spatial, temporal and external factors. 2) multiple spatio-temporal correlations, including long-range and short-range spatial correlations, as well as long-term and short-term temporal correlations. To solve these issues, we propose a spatio-temporal memory augmented multi-level attention network for fine-grained traffic prediction, entitled ST-MAN. Specifically, we design a spatio-temporal memory network to encode and memorize fine-grained spatial information and representative temporal patterns. Then, we propose a multi-level attention network to explicitly model both short-term local spatio-temporal dependencies and long-term global spatio-temporal dependencies at different spatial scales (i.e., grid and region levels) and temporal scales (i.e., daily and weekly levels). In addition, we design an external component that takes external factors and spatial embeddings as inputs to generate location-aware influence of the external factors much more efficiently. Finally, we design an end-to-end framework optimized with the contrastive objective and supervised objective to boost model performance. Empirical experiments over coarse-grained and fine-grained real-world datasets demonstrate the superiority of the ST-MAN model compared to several state-of-the-art baselines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
麦苗果果发布了新的文献求助20
刚刚
1秒前
LALball发布了新的文献求助10
2秒前
会飞的猪发布了新的文献求助10
3秒前
一只猫完成签到,获得积分10
3秒前
shelemi完成签到,获得积分10
3秒前
糖配坤完成签到 ,获得积分10
5秒前
5秒前
爆米花应助helicase采纳,获得10
7秒前
华仔应助抹茶芝士酸奶采纳,获得10
7秒前
量子星尘发布了新的文献求助10
8秒前
kkpzc发布了新的文献求助10
8秒前
Lucas应助dxt采纳,获得10
8秒前
9秒前
8R60d8应助敏感的曼香采纳,获得10
9秒前
CodeCraft应助莎莎采纳,获得10
9秒前
Rgly发布了新的文献求助10
10秒前
断棍豪斯完成签到,获得积分10
11秒前
科研通AI2S应助麦苗果果采纳,获得20
11秒前
南宫硕完成签到 ,获得积分10
13秒前
思源应助doctorduanmu采纳,获得10
13秒前
13秒前
14秒前
BLAZe完成签到 ,获得积分10
16秒前
16秒前
17秒前
yangmo发布了新的文献求助10
17秒前
深情的鞯完成签到,获得积分10
18秒前
红茶冰可可完成签到 ,获得积分10
18秒前
19秒前
浮游应助绿大暗采纳,获得30
20秒前
wwmmyy完成签到 ,获得积分10
21秒前
22秒前
23秒前
24秒前
25秒前
25秒前
你我山巅自相逢完成签到 ,获得积分10
26秒前
星辰大海应助科研通管家采纳,获得10
26秒前
科研通AI6应助科研通管家采纳,获得10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5421991
求助须知:如何正确求助?哪些是违规求助? 4536983
关于积分的说明 14155650
捐赠科研通 4453570
什么是DOI,文献DOI怎么找? 2442949
邀请新用户注册赠送积分活动 1434359
关于科研通互助平台的介绍 1411431