Artificial intelligence for predictive biomarker discovery in immuno-oncology: a systematic review

医学 生物标志物发现 生物标志物 肿瘤科 内科学 医学物理学 蛋白质组学 化学 生物化学 基因
作者
Arsela Prelaj,Vanja Mišković,Michele Zanitti,Francesco Trovò,Carlo Genova,Giuseppe Viscardi,Sara Elena Rebuzzi,Laura Mazzeo,Leonardo Provenzano,Sokol Kosta,M. A. Favali,Andrea Spagnoletti,L. Castelo-Branco,James M. Dolezal,Alexander T. Pearson,Giuseppe Lo Russo,Claudia Proto,Monica Ganzinelli,Carlotta Giani,Emilia Ambrosini
出处
期刊:Annals of Oncology [Elsevier BV]
卷期号:35 (1): 29-65 被引量:97
标识
DOI:10.1016/j.annonc.2023.10.125
摘要

Background The widespread use of Immune checkpoint-inhibitors (ICI) has revolutionised treatment of multiple cancer types. However, selecting patients who may benefit from ICI remains challenging. Artificial Intelligence (AI) approaches allow exploitation of high-dimension oncological data in research and development of precision immuno-oncology. Methods We conducted a systematic literature review of peer-reviewed original articles studying the ICI efficacy prediction in cancer patients across five data modalities: genomics (including genomics, transcriptomics, and epigenomics), radiomics, digital pathology (pathomics) and real-world and multimodality data. Results A total of 90 studies were included in this systematic review, with 80% published in 2021-2022. Among them, 37 studies included genomic, 20 radiomic, 8 pathomic, 20 real-world and 5 multimodal data. Standard machine learning (ML) methods were used in 72% of studies, deep learning (DL) methods in 22%, and both in 6%. The most frequently studied cancer type was NSCLC (36%), followed by melanoma (16%), while 25% included pan-cancer studies. No prospective study design incorporated AI-based methodologies from the outset, rather all implemented AI as post-hoc analysis. Novel biomarkers for ICI in radiomics and pathomics were identified using AI approaches, and molecular biomarkers have expanded past genomics into transcriptomics and epigenomics. Finally, complex algorithms and new types of AI-based markers, such as meta-biomarkers, are emerging by integrating multimodal/multiomics data. Conclusion AI based-methods have expanded the horizon for biomarker discovery, demonstrating the power of integrating multimodal data from existing datasets to discover new meta-biomarkers. While most of the included studies showed promise for AI-based prediction of benefit from immunotherapy, none provided high-level evidence for immediate practice change. A priori planned prospective trial designs are needed to cover all lifecycle steps of these software biomarkers, from development and validation to integration into clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
伍寒烟发布了新的文献求助10
1秒前
CipherSage应助称心璎采纳,获得10
1秒前
Philthee发布了新的文献求助10
3秒前
3秒前
辛勤的剑完成签到 ,获得积分10
5秒前
荡乎宇宙如虚舟完成签到,获得积分10
5秒前
小蘑菇应助看不完的文献采纳,获得10
5秒前
王大哥完成签到,获得积分10
9秒前
小蘑菇应助alooof采纳,获得10
9秒前
风雨发布了新的文献求助10
9秒前
23秒前
川ccc发布了新的文献求助100
24秒前
数据线完成签到,获得积分10
25秒前
26秒前
26秒前
乐观振家发布了新的文献求助10
31秒前
幽默果汁完成签到 ,获得积分10
32秒前
33秒前
33秒前
34秒前
激情的一斩完成签到,获得积分20
35秒前
风雨完成签到,获得积分10
36秒前
36秒前
乐观振家完成签到,获得积分10
37秒前
嘴嘴是大嘴007完成签到,获得积分10
38秒前
直击灵魂完成签到,获得积分10
38秒前
郭博发布了新的文献求助30
38秒前
39秒前
100发布了新的文献求助10
39秒前
Owen应助激情的一斩采纳,获得10
40秒前
可爱非笑发布了新的文献求助10
42秒前
llc完成签到 ,获得积分10
45秒前
英俊的铭应助科研通管家采纳,获得10
45秒前
顾矜应助科研通管家采纳,获得10
45秒前
ding应助科研通管家采纳,获得10
46秒前
科研通AI5应助科研通管家采纳,获得10
46秒前
星辰大海应助科研通管家采纳,获得10
46秒前
SYLH应助科研通管家采纳,获得30
46秒前
科研通AI5应助科研通管家采纳,获得10
46秒前
传奇3应助科研通管家采纳,获得10
46秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
基于CZT探测器的128通道能量时间前端读出ASIC设计 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777347
求助须知:如何正确求助?哪些是违规求助? 3322741
关于积分的说明 10211312
捐赠科研通 3038069
什么是DOI,文献DOI怎么找? 1667051
邀请新用户注册赠送积分活动 797952
科研通“疑难数据库(出版商)”最低求助积分说明 758098