亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Novel Fused Multi-Class Deep Learning Approach for Chronic Wounds Classification

慢性伤口 医学 人工智能 班级(哲学) 伤口护理 医疗保健 机器学习 计算机科学 重症监护医学 外科 伤口愈合 经济增长 经济
作者
Zaid A. Aldoulah,Hafiz Malik,Richard Molyet
出处
期刊:Applied sciences [Multidisciplinary Digital Publishing Institute]
卷期号:13 (21): 11630-11630 被引量:8
标识
DOI:10.3390/app132111630
摘要

Chronic wounds affect the lives of millions of individuals globally, and due to substantial medical costs, treating chronic injuries is very challenging for the healthcare system. The classification of regular wound type is essential in wound care management and diagnosis since it can assist clinicians in deciding on the appropriate treatment method. Hence, an effective wound diagnostic tool would enable clinicians to classify the different types of chronic wounds in less time. The majority of the existing chronic wound classification methods are mainly focused on the binary classification of the wound types. A few approaches exist that classify chronic wounds into multiple classes, but these achieved lower performances for pressure and diabetic wound classification. Furthermore, cross-corpus evaluation is absent in chronic wound type classification, in order to better evaluate the efficacy of existing methods on real-time wound images. To address the limitations of the current studies, we propose a novel Swish-ELU EfficientNet-B4 (SEEN-B4) deep learning framework that can effectively identify and classify chronic wounds into multiple classes. Moreover, we also extend the existing Medetec and Advancing the Zenith of Healthcare (AZH) datasets to deal with the class imbalance problem of these datasets. Our proposed model is evaluated on publicly available AZH and Medetec datasets and their extended versions. Our experimental results indicate that the proposed SEEN-B4 model has attained an accuracy of 87.32%, 88.17%, 88%, and 89.34% on the AZH, Extended AZH, Medetec, and Extended Medetec datasets, respectively. We also show the effectiveness of our method against the existing state-of-the-art (SOTA) methods. Furthermore, we evaluated the proposed model for the cross-corpora scenario to demonstrate the model generalization aptitude, and interpret the model’s result through explainable AI techniques. The experimental results show the proposed model’s effectiveness for classifying chronic wound types.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
chan完成签到,获得积分10
1秒前
2秒前
Jasper应助科研通管家采纳,获得10
3秒前
赘婿应助科研通管家采纳,获得10
4秒前
21秒前
爆米花应助泡泡采纳,获得10
1分钟前
1分钟前
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
3分钟前
3分钟前
sonya发布了新的文献求助10
3分钟前
3分钟前
按摩头了完成签到 ,获得积分10
3分钟前
3分钟前
4分钟前
4分钟前
4分钟前
4分钟前
Liufgui应助MOFS采纳,获得10
4分钟前
5分钟前
5分钟前
5分钟前
Liufgui应助MOFS采纳,获得10
5分钟前
5分钟前
5分钟前
无私追命完成签到,获得积分10
5分钟前
无私追命发布了新的文献求助10
6分钟前
佳佳应助无私追命采纳,获得10
6分钟前
7分钟前
7分钟前
7分钟前
白嫖论文完成签到 ,获得积分10
7分钟前
jyy完成签到,获得积分10
7分钟前
7分钟前
桃子完成签到 ,获得积分10
7分钟前
不去明知山完成签到 ,获得积分10
7分钟前
桃子牛肉酱完成签到 ,获得积分10
7分钟前
7分钟前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3995492
求助须知:如何正确求助?哪些是违规求助? 3535269
关于积分的说明 11267238
捐赠科研通 3275083
什么是DOI,文献DOI怎么找? 1806530
邀请新用户注册赠送积分活动 883349
科研通“疑难数据库(出版商)”最低求助积分说明 809782