Degradation and modeling of large-format commercial lithium-ion cells as a function of chemistry, design, and aging conditions

泄流深度 电池(电) 锂(药物) 储能 磷酸铁锂 灵敏度(控制系统) 降级(电信) 电气工程 材料科学 功率(物理) 计算机科学 工程类 热力学 电子工程 物理 内分泌学 医学
作者
Paul Gasper,Aron Saxon,Ying Shi,Elizabeth Endler,Kandler Smith,Foram M. Thakkar
出处
期刊:Journal of energy storage [Elsevier]
卷期号:73: 109042-109042 被引量:2
标识
DOI:10.1016/j.est.2023.109042
摘要

Demand for large-format (>10 Ah) lithium-ion batteries has increased substantially in recent years, due to the growth of both electric vehicle and stationary energy storage markets. The economics of these applications is sensitive to the lifetime of the batteries, and end-of-life can either be due to energy or power limitations. Despite this, there is little information from cell manufacturers on the sensitivity of cell degradation to environmental conditions or battery use. This work reports accelerated aging test data from four commercial large-format lithium-ion batteries from three manufacturers, with varying design (thickness, casings, …), chemistry (lithium‑iron-phosphate (LFP) or lithium‑nickel‑manganese‑cobalt-oxide positive electrodes (NMC), with graphite (Gr) negative electrodes), and capacity (50 to 250 Amp∙hours). The tested LFP|Gr cell is found to be relatively insensitive to cycling conditions like temperature or voltage window, while NMC|Gr cells have varying sensitivity. Degradation trends are further investigated by training predictive models: simple polynomial trend lines, a semi-empirical reduced-order model, and an empirical reduced-order model identified using machine-learning based on symbolic regression. Calendar and cycle life are simulated over a variety of conditions to directly compare the various batteries. Cell size and thickness are found to substantially impact sensitivity to temperature during cycle aging, while electrode chemistry impacts depth-of-discharge sensitivity. Real-world battery lifetime is evaluated by simulating residential energy storage and commercial frequency containment reserve systems in several U.S. climate regions. Predicted lifetime across cell types varies from 7 years to 20+ years, though all cells are predicted to have at least 10 year life in certain conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
漂亮的松思完成签到 ,获得积分10
刚刚
3秒前
qinghe完成签到 ,获得积分10
3秒前
沐1217完成签到,获得积分10
5秒前
pluto应助科研通管家采纳,获得40
5秒前
小蘑菇应助科研通管家采纳,获得10
5秒前
赘婿应助科研通管家采纳,获得10
5秒前
秋雪瑶应助科研通管家采纳,获得10
6秒前
Jasper应助科研通管家采纳,获得10
6秒前
科研通AI2S应助科研通管家采纳,获得20
6秒前
等你来应助科研通管家采纳,获得30
6秒前
Ava应助科研通管家采纳,获得10
6秒前
6秒前
禤禤完成签到,获得积分10
6秒前
CCCVICKY发布了新的文献求助30
8秒前
典雅君浩完成签到,获得积分10
10秒前
11秒前
不鸭完成签到 ,获得积分10
12秒前
16秒前
17秒前
乐乐应助世事如书采纳,获得10
18秒前
余九应助夏侯德东采纳,获得10
22秒前
momoyama完成签到,获得积分10
24秒前
FIONA完成签到 ,获得积分10
25秒前
默默毛豆完成签到 ,获得积分10
26秒前
zzz完成签到,获得积分10
29秒前
大模型应助出门右转采纳,获得10
30秒前
31秒前
魔幻的雍完成签到,获得积分10
36秒前
36秒前
37秒前
lsy完成签到,获得积分10
37秒前
Singularity举报阿斯顿马丁求助涉嫌违规
38秒前
41秒前
落雪完成签到 ,获得积分10
41秒前
苏折完成签到,获得积分10
42秒前
世事如书发布了新的文献求助10
43秒前
43秒前
出门右转完成签到,获得积分10
44秒前
晓晓鹤发布了新的文献求助10
45秒前
高分求助中
Sustainable Land Management: Strategies to Cope with the Marginalisation of Agriculture 1000
Corrosion and Oxygen Control 600
Python Programming for Linguistics and Digital Humanities: Applications for Text-Focused Fields 500
Love and Friendship in the Western Tradition: From Plato to Postmodernity 500
Heterocyclic Stilbene and Bibenzyl Derivatives in Liverworts: Distribution, Structures, Total Synthesis and Biological Activity 500
重庆市新能源汽车产业大数据招商指南(两链两图两池两库两平台两清单两报告) 400
Division and square root. Digit-recurrence algorithms and implementations 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2549580
求助须知:如何正确求助?哪些是违规求助? 2176989
关于积分的说明 5607301
捐赠科研通 1897819
什么是DOI,文献DOI怎么找? 947365
版权声明 565447
科研通“疑难数据库(出版商)”最低求助积分说明 504094