Prediction of body composition in growing-finishing pigs using ultrasound based back-fat depth approach and machine learning algorithms

均方误差 支持向量机 数学 线性回归 决定系数 统计 预测建模 随机森林 回归分析 均方预测误差 回归 相关系数 机器学习 算法 计算机科学
作者
Jayanta Kumar Basak,Bhola Paudel,Nibas Chandra Deb,Dae Yeong Kang,Byeong Eun Moon,Shihab Ahmad Shahriar,Hyeon Tae Kim
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:213: 108269-108269 被引量:5
标识
DOI:10.1016/j.compag.2023.108269
摘要

Timely monitoring and precise estimation of body composition parameters, such as fat mass (FM) and fat-free mass (FFM), are crucial for pig production. Therefore, this study aimed to utilize three machine learning models, namely multiple linear regression (MLR), random forest regression (RFR), and support vector regression (SVR), to predict FM and FFM in growing-finishing pigs using four input combinations of three variables, i.e., mass of pigs, feed intake, and surface temperature of pigs. An ultrasound-based back-fat depth measurement approach was used to determine FM and FFM, and these measurements were compared with reference measurements obtained from slaughtered pigs. Data from two experimental periods in 2021 and 2022 were used for training and testing these models. Performance metrics, including the coefficient of determination (R2), root mean square error (RMSE), and mean absolute error (MAE), were used to evaluate the models' performance and stability. The results showed that the SVR model had the highest accuracy in predicting FM and FFM, with the ability to explain the relationship between input and target variables up to 94.4% in FM and 94.6% in FFM prediction. Additionally, the SVR model consistently outperformed the RFR and MLR models in predicting FM, with an increase in R2 of up to 6.72% and 27.96%, respectively, and a reduction in RMSE of up to 24.06% and 36.82%, respectively, across different input combinations. Similar results were obtained in FFM prediction, where the SVR model showed an increase in R2 of up to 6.47% and 22.45%, and a reduction in RMSE of up to 23.96% and 36.57% compared to RFR and MLR models, respectively. Moreover, the SVR model demonstrated the highest stability, with only 2.9% to 3.3% decrease in R2 during the testing phase compared to the training phase, while the RFR model exhibited the worst stability. Findings of the present study suggested that the SVR model was the most stable and reliable, along with the ultrasound-based back-fat depth approach for measuring FM and FFM in growing-finishing pigs. This approach could aid in monitoring meat quality and providing a rapid overview of body composition for pig farmers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Brian完成签到,获得积分10
刚刚
骆大驼发布了新的文献求助10
1秒前
浅笑成风完成签到,获得积分10
3秒前
xu关注了科研通微信公众号
4秒前
6秒前
动人的亦云完成签到 ,获得积分10
8秒前
无花果应助cure采纳,获得10
8秒前
影默完成签到,获得积分10
8秒前
饱满的大碗完成签到 ,获得积分10
10秒前
Qintt完成签到 ,获得积分10
10秒前
黑米粥发布了新的文献求助10
12秒前
Shandongdaxiu发布了新的文献求助10
13秒前
木桶人plus完成签到 ,获得积分10
14秒前
qiqi发布了新的文献求助10
15秒前
AamirAli完成签到,获得积分10
17秒前
斯文败类应助advance采纳,获得10
22秒前
27秒前
阔达曲奇发布了新的文献求助10
28秒前
完美世界应助985博士采纳,获得10
29秒前
852应助L_online采纳,获得50
29秒前
善学以致用应助qiqi采纳,获得10
29秒前
长歌完成签到,获得积分10
33秒前
wind发布了新的文献求助10
33秒前
斯文败类应助任性诗蕾采纳,获得10
33秒前
33秒前
骆大驼完成签到,获得积分10
36秒前
advance发布了新的文献求助10
37秒前
40秒前
40秒前
41秒前
41秒前
熊大完成签到,获得积分10
43秒前
舒心谷雪完成签到 ,获得积分10
43秒前
头发乱了发布了新的文献求助10
44秒前
任性诗蕾发布了新的文献求助10
45秒前
丘比特应助wind采纳,获得30
45秒前
hedwig完成签到 ,获得积分10
46秒前
Grace0610发布了新的文献求助10
46秒前
科研通AI2S应助科研通管家采纳,获得10
47秒前
48秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777940
求助须知:如何正确求助?哪些是违规求助? 3323546
关于积分的说明 10214860
捐赠科研通 3038738
什么是DOI,文献DOI怎么找? 1667634
邀请新用户注册赠送积分活动 798236
科研通“疑难数据库(出版商)”最低求助积分说明 758315