Multi-Objective Optimization of AGV Real-Time Scheduling Based on Deep Reinforcement Learning

强化学习 工作车间 计算机科学 作业车间调度 调度(生产过程) 马尔可夫决策过程 人工智能 流水车间调度 Python(编程语言) 工业工程 机器学习 数学优化 马尔可夫过程 工程类 嵌入式系统 统计 布线(电子设计自动化) 数学 操作系统
作者
Philip Durst,Jia Xu,Li Li
标识
DOI:10.23919/ccc58697.2023.10240797
摘要

Driven by the trend away from mass production towards more customization and individualism, manufacturing is under massive price pressure. Therefore, continuously improving production efficiency and reducing costs have always been the focus of manufacturing companies. With recent advances in Industry 4.0 and industrial Artificial Intelligence (AI), Automated Guided Vehicles (AGVs) have become a very promising technology to support this trend. Nowadays, they are widely used in job shop environments for material handling. However, this promising technology goes along with various new challenges, such as the high dynamics, complexity, and uncertainty of the job shop environment for AGV scheduling. To address these challenges, an adaptive Deep Reinforcement Learning (DRL) based AGV real-time scheduling approach is approached to optimize several efficiency parameters of the overall job shop system. Firstly, the DRL optimization problem is formulated as Markov Decision Process (MDP). The state and action representation, reward, and optimal policy function are described in detail. Then a novel DRL method is further developed to achieve the optimal mixed rule policy. For that, a novel RL algorithm, Proximal Policy Optimization (PPO), is applied to the Deep Neural Network (DNN) and implemented in TensorForce, a reinforcement learning package in Python based on TensorFlow. This algorithm is compared to conventional heuristic rules. Furthermore, SimPy, a relatively new discrete-event simulation package in Python, is used to implement the job shop environment. The job shop environment is based on a real-world scenario of a semiconductor factory, which is implemented in a simplified manner and applied to the DRL agent. The results are presented afterward, followed by a feasibility and effectiveness analysis of this approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
寻梦发布了新的文献求助10
2秒前
冷静石头完成签到,获得积分10
3秒前
3秒前
科研狗发布了新的文献求助10
3秒前
人福药业完成签到,获得积分10
5秒前
6秒前
ee发布了新的文献求助10
7秒前
英勇的幻露完成签到,获得积分10
7秒前
8秒前
8秒前
uii完成签到,获得积分10
8秒前
9秒前
研究僧完成签到,获得积分10
9秒前
9秒前
希望天下0贩的0应助小方采纳,获得10
10秒前
拾寒完成签到,获得积分10
10秒前
PIKACHU发布了新的文献求助10
10秒前
arielice完成签到,获得积分10
12秒前
寻梦完成签到,获得积分0
13秒前
勇者先享受生活完成签到 ,获得积分10
13秒前
13秒前
央央完成签到,获得积分10
14秒前
322628完成签到,获得积分10
14秒前
大俊哥发布了新的文献求助10
14秒前
PIKACHU完成签到,获得积分10
16秒前
ee完成签到,获得积分20
16秒前
充电宝应助正直的千柔采纳,获得10
17秒前
科研通AI5应助坚定的迎波采纳,获得10
18秒前
19秒前
19秒前
老坛酸菜关注了科研通微信公众号
19秒前
友好的储发布了新的文献求助10
20秒前
qpdxj关注了科研通微信公众号
21秒前
22秒前
就酱发布了新的文献求助20
22秒前
24秒前
传奇3应助naturehome采纳,获得10
25秒前
犹豫明雪发布了新的文献求助10
26秒前
flypipidan完成签到,获得积分10
26秒前
科研通AI5应助7123采纳,获得30
26秒前
高分求助中
Algorithmic Mathematics in Machine Learning 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
The Burge and Minnechaduza Clarendonian mammalian faunas of north-central Nebraska 206
Methods and Applications of Geochronology 200
An Integrated Solution for Application of Next-Generation Sequencing in Newborn Screening 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3831787
求助须知:如何正确求助?哪些是违规求助? 3373901
关于积分的说明 10482367
捐赠科研通 3093826
什么是DOI,文献DOI怎么找? 1703081
邀请新用户注册赠送积分活动 819287
科研通“疑难数据库(出版商)”最低求助积分说明 771399