LKD-STNN: A Lightweight Malicious Traffic Detection Method for Internet of Things Based on Knowledge Distillation

计算机科学 鉴定(生物学) 深度学习 物联网 钥匙(锁) 人工智能 入侵检测系统 过程(计算) 机器学习 数据挖掘 计算机安全 植物 生物 操作系统
作者
Shizhou Zhu,Xiaolong Xu,Juan Zhao,Fu Xiao
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (4): 6438-6453 被引量:5
标识
DOI:10.1109/jiot.2023.3310794
摘要

The purpose of malicious traffic detection and identification in the Internet of Things (IoT) is to detect the intrusion of malicious traffic within the IoT network into IoT devices. Detection and identification play a key role in ensuring the security of the IoT. At this time, great success has been achieved with deep learning in the field of malicious traffic detection and identification. However, due to resource limitations, such as computation weaknesses and low-edge network node storage capacity in the IoT, a high-complexity model based on deep learning cannot be deployed and applied. In this article, we propose a lightweight malicious traffic detection and recognition model named lightweight knowledge distillation space time neural network (LKD-STNN) based on knowledge distillation (KD) deep learning for the IoT. We use KD to build a lightweight student model by depthwise separable convolution and bidirectional long short-term memory (BiLSTM) to realize a lightweight student model and obtain multidimensional characteristic information. According to the characteristics of KD, we propose an adaptive temperature function that can adaptively and dynamically change the temperature during the process of knowledge transfer so that different softening characteristics can be obtained during the training process. Then, the weight is updated by combining loss functions to improve the performance of the student model. The experimental results show that with the publicly available malicious traffic data sets for the IoT, the ToN- IoT and IoT-23, our model not only reduces the complexity of the model and the number of model parameters to less than 1% of the teacher model but also reaches an accuracy of more than 98%, indicating that our model can be applied to the multiclassification identification of malicious traffic in the IoT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
领导范儿应助苏灿采纳,获得10
1秒前
传奇3应助喻白玉采纳,获得10
2秒前
2秒前
2秒前
Owen应助xixi采纳,获得10
3秒前
Jke完成签到,获得积分10
3秒前
3秒前
5秒前
7秒前
lgbabe发布了新的文献求助10
7秒前
7秒前
HGQ完成签到,获得积分10
8秒前
8秒前
8秒前
8秒前
9秒前
彭于彦祖应助yefeng采纳,获得20
9秒前
9秒前
syunlam完成签到,获得积分20
10秒前
科研通AI5应助热心的傲薇采纳,获得10
10秒前
10秒前
我是老大应助noriZHC采纳,获得10
11秒前
wjy321发布了新的文献求助10
11秒前
11秒前
11秒前
等待安柏发布了新的文献求助10
12秒前
荷兰香猪发布了新的文献求助10
13秒前
lyy发布了新的文献求助10
13秒前
xcc发布了新的文献求助10
14秒前
今后应助伍六柒采纳,获得10
15秒前
小欧发布了新的文献求助20
16秒前
荔枝发布了新的文献求助10
17秒前
幼稚园老大完成签到,获得积分10
18秒前
18秒前
18秒前
syunlam发布了新的文献求助10
19秒前
汉堡包应助传统的柚子采纳,获得30
20秒前
风吹麦田应助小羊采纳,获得10
20秒前
21秒前
霍金键完成签到,获得积分10
21秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3818366
求助须知:如何正确求助?哪些是违规求助? 3361517
关于积分的说明 10413139
捐赠科研通 3079768
什么是DOI,文献DOI怎么找? 1692743
邀请新用户注册赠送积分活动 814539
科研通“疑难数据库(出版商)”最低求助积分说明 768193