Robust RGB-T Tracking via Adaptive Modality Weight Correlation Filters and Cross-modality Learning

计算机科学 模态(人机交互) 人工智能 稳健性(进化) 相关性 眼动 模式识别(心理学) 计算机视觉 机器学习 数学 生物化学 化学 几何学 基因
作者
Mingliang Zhou,Xinwen Zhao,Futing Luo,Jun Luo,Huayan Pu,Tao Xiang
出处
期刊:ACM Transactions on Multimedia Computing, Communications, and Applications [Association for Computing Machinery]
卷期号:20 (4): 1-20 被引量:24
标识
DOI:10.1145/3630100
摘要

RGBT tracking is gaining popularity due to its ability to provide effective tracking results in a variety of weather conditions. However, feature specificity and complementarity have not been fully used in existing models that directly fuse the correlation filtering response, which leads to poor tracker performance. In this article, we propose correlation filters with adaptive modality weight and cross-modality learning (AWCM) ability to solve multimodality tracking tasks. First, we use weighted activation to fuse thermal infrared and visible modalities, and the fusion modality is used as an auxiliary modality to suppress noise and increase the learning ability of shared modal features. Second, we design modal weights through average peak-to-correlation energy coefficients to improve model reliability. Third, we propose consistency in using the fusion modality as an intermediate variable for joint learning consistency, thereby increasing tracker robustness via interactive cross-modal learning. Finally, we use the alternating direction method of multipliers algorithm to produce a closed solution and conduct extensive experiments on the RGBT234, VOT-TIR2019, and GTOT tracking benchmark datasets to demonstrate the superior performance of the proposed AWCM against compared to existing tracking algorithms. The code developed in this study is available at the following website. 1
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
wanci应助梦红尘采纳,获得10
刚刚
清蒸鱼发布了新的文献求助10
刚刚
小叮当完成签到,获得积分10
刚刚
HB发布了新的文献求助10
1秒前
Owen应助体贴半仙采纳,获得10
1秒前
Virtual应助熊丽菲采纳,获得10
1秒前
1秒前
uraylong发布了新的文献求助10
2秒前
2秒前
凌晨幻舞完成签到,获得积分10
2秒前
2秒前
余姓懒发布了新的文献求助10
3秒前
ffff发布了新的文献求助10
5秒前
sanchu完成签到,获得积分10
5秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
Lucas应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
小二郎应助uraylong采纳,获得10
6秒前
小马甲应助科研通管家采纳,获得10
6秒前
思源应助科研通管家采纳,获得10
7秒前
隐形曼青应助科研通管家采纳,获得10
7秒前
风清扬应助科研通管家采纳,获得30
7秒前
jie酱拌面应助mmmmmagic采纳,获得10
7秒前
华仔应助科研通管家采纳,获得10
7秒前
Giraffe完成签到,获得积分10
7秒前
小马甲应助科研通管家采纳,获得10
7秒前
思源应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
自由飞翔发布了新的文献求助10
8秒前
Akim应助热情的绿真采纳,获得10
9秒前
RRRickyyy发布了新的文献求助10
9秒前
JX发布了新的文献求助10
9秒前
高贵书白完成签到,获得积分10
9秒前
铮铮完成签到,获得积分10
9秒前
9秒前
大模型应助范范采纳,获得20
10秒前
Jessica发布了新的文献求助60
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4580235
求助须知:如何正确求助?哪些是违规求助? 3998358
关于积分的说明 12378721
捐赠科研通 3672746
什么是DOI,文献DOI怎么找? 2024076
邀请新用户注册赠送积分活动 1058189
科研通“疑难数据库(出版商)”最低求助积分说明 944946