Early Identification of Potential Disruptive Technologies Using Machine Learning and Text Mining

鉴定(生物学) 计算机科学 数据科学 人工智能 机器学习 植物 生物
作者
Xin Li,Xiaodi Ma
标识
DOI:10.23919/picmet59654.2023.10216869
摘要

Early identification of potential disruptive technologies is critical to corporate R&D investment decisions and government R&D strategy decisions. However, how early identifying potential disruptive technologies has been the focus of academic community. Therefore, in this paper, we propose a framework for early identification of potential disruptive technologies based on machine learning and text mining. In the framework, we firstly obtain relationships pattern between the characteristics of highly cited papers and their citation trends by using machine learning models. Then, we use the relationships pattern to identify potential highly cited papers, solving the time lag problem of using citation analysis to identify potential highly cited papers. Secondly, we construct a breakthrough index based on breakthrough research characteristics to identify breakthrough papers from potential highly cited papers. Finally, we use text mining methods to obtain breakthrough research topics from breakthrough papers, and identify potential disruptive technologies by analyzing and evaluating breakthrough research topics. An empirical study was conducted in the field of chemistry discipline to verify the framework's feasibility and effectiveness. This paper provides a new perspective for the early identification of potential disruptive technologies and lessons for breakthrough research identification and evaluation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
在水一方应助鱼yuyu采纳,获得10
2秒前
11111112222完成签到,获得积分10
2秒前
lbx发布了新的文献求助10
2秒前
Jian完成签到,获得积分10
2秒前
沉默襄发布了新的文献求助10
2秒前
2秒前
2秒前
长安完成签到 ,获得积分10
2秒前
我是老大应助聪慧的正豪采纳,获得10
3秒前
le123zxc完成签到,获得积分10
3秒前
cris_xu24完成签到,获得积分10
4秒前
4秒前
晓倩完成签到,获得积分10
4秒前
4秒前
5秒前
小蘑菇应助王蕊采纳,获得10
5秒前
科目三应助张均旗采纳,获得10
5秒前
万能图书馆应助云谷采纳,获得10
5秒前
FashionBoy应助愉快南风采纳,获得10
5秒前
思源应助时尚的皮卡丘采纳,获得10
6秒前
6秒前
6秒前
6秒前
量子星尘发布了新的文献求助10
7秒前
长安关注了科研通微信公众号
7秒前
didi发布了新的文献求助30
7秒前
8秒前
Jasper应助ylyn采纳,获得10
9秒前
9秒前
10秒前
子车茗应助xuejie采纳,获得20
10秒前
xxxx完成签到,获得积分10
10秒前
10秒前
10秒前
量子星尘发布了新的文献求助10
11秒前
云淡风轻发布了新的文献求助10
11秒前
闵傲南发布了新的文献求助30
11秒前
11秒前
12秒前
科研通AI2S应助微光熠采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5660714
求助须知:如何正确求助?哪些是违规求助? 4835349
关于积分的说明 15091772
捐赠科研通 4819287
什么是DOI,文献DOI怎么找? 2579203
邀请新用户注册赠送积分活动 1533686
关于科研通互助平台的介绍 1492503