亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

The Discrete Theorema Egregium

高斯曲率 数学 意义(存在) 中心(范畴论) 卓越 数学科学 曲率 艺术史 牙石(牙科) 数学教育 几何学 哲学 艺术 认识论 化学 牙科 医学 结晶学
作者
Thomas Banchoff,Felix Günther
出处
期刊:American Mathematical Monthly [Taylor & Francis]
卷期号:131 (1): 30-47
标识
DOI:10.1080/00029890.2023.2263299
摘要

AbstractIn 1827, Gauss proved that Gaussian curvature is actually an intrinsic quantity, meaning that it can be calculated just from measurements within the surface. Before, curvature of surfaces could only be computed extrinsically, meaning that an ambient space is needed. Gauss named this remarkable finding Theorema Egregium. In this paper, we discuss a discrete version of this theorem for polyhedral surfaces. We give an elementary proof that the common extrinsic and intrinsic definitions of discrete Gaussian curvature are equivalent. AcknowledgmentThe authors thank the two anonymous reviewers and the editorial board for their valuable remarks. The research was initiated during the second author’s stay at the Max Planck Institute for Mathematics in Bonn. It was funded by the Deutsche Forschungsgemeinschaft DFG through the Collaborative Research Center TRR 109 “Discretization in Geometry and Dynamics” and under Germany’s Excellence Strategy – The Berlin Mathematics Research Center MATH+ (EXC-2046/1, project ID: 390685689).Additional informationNotes on contributorsThomas F. BanchoffTHOMAS BANCHOFF is professor emeritus of mathematics at Brown University, where he taught from 1967 to 2015. He received his Ph.D. from the University of California, Berkeley, in 1964 and served as president of the MAA from 1999 to 2000.Department of Mathematics, Brown University, Box 1917, 151 Thayer Street, Providence RI 02912Thomas_Banchoff@brown.eduFelix GüntherFELIX GÜNTHER received his Ph.D. in mathematics from Technische Universität Berlin in 2014. After holding postdoctoral positions at the Institut des Hautes Etudes Scientifiques in Bures-sur-Yvette, the Isaac Newton Institute for Mathematical Sciences in Cambridge, the Erwin Schrödinger International Institute for Mathematics and Physics in Vienna, the Max Planck Institute for Mathematics in Bonn, and the University of Geneva, he came back to Technische Universität Berlin in 2018. His research interests include discrete differential geometry and discrete complex analysis. He also has a passion for science communication.Technische Universität Berlin, Institut für Mathematik MA 8-3, Straße des 17. Juni 136, 10623 Berlin, Germanyfguenth@math.tu-berlin.de
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fang完成签到,获得积分10
1秒前
yin景景完成签到,获得积分10
10秒前
11秒前
丹丹子完成签到 ,获得积分10
16秒前
斯文梦寒完成签到 ,获得积分10
20秒前
烟花应助113采纳,获得10
28秒前
29秒前
英姑应助yxj采纳,获得10
30秒前
牛马研究生完成签到 ,获得积分10
30秒前
35秒前
fang完成签到,获得积分10
37秒前
39秒前
113发布了新的文献求助10
39秒前
41秒前
42秒前
kekekeke完成签到 ,获得积分10
44秒前
yxj发布了新的文献求助10
44秒前
47秒前
47秒前
Milton_z完成签到 ,获得积分0
53秒前
55秒前
wlq完成签到,获得积分10
57秒前
1分钟前
1分钟前
ding应助xhDoc采纳,获得30
1分钟前
淡定的翠霜完成签到 ,获得积分10
1分钟前
梦华完成签到 ,获得积分10
1分钟前
为十完成签到 ,获得积分10
1分钟前
1分钟前
酷波er应助zcl采纳,获得10
1分钟前
trq1007完成签到,获得积分20
1分钟前
阿宁关注了科研通微信公众号
1分钟前
fffffan发布了新的文献求助10
1分钟前
1分钟前
1分钟前
iacir33完成签到,获得积分10
1分钟前
科目三应助trq1007采纳,获得10
1分钟前
1分钟前
1分钟前
星辰大海应助fffffan采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Kolmogorov, A. N. Qualitative study of mathematical models of populations. Problems of Cybernetics, 1972, 25, 100-106 800
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5301742
求助须知:如何正确求助?哪些是违规求助? 4449232
关于积分的说明 13848006
捐赠科研通 4335250
什么是DOI,文献DOI怎么找? 2380243
邀请新用户注册赠送积分活动 1375213
关于科研通互助平台的介绍 1341252