清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Attention-UNet architectures with pretrained backbones for multi-class cardiac MR image segmentation

分割 Sørensen–骰子系数 人工智能 掷骰子 深度学习 磁共振成像 计算机科学 模式识别(心理学) 图像分割 医学 放射科 数学 统计
作者
Niharika Das,Sujoy Das
出处
期刊:Current Problems in Cardiology [Elsevier BV]
卷期号:49 (1): 102129-102129 被引量:9
标识
DOI:10.1016/j.cpcardiol.2023.102129
摘要

Segmentation architectures based on deep learning proficient extraordinary results in medical imaging technologies. Computed tomography (CT) images and Magnetic Resonance Imaging (MRI) in diagnosis and treatment are increasing and significantly support the diagnostic process by removing the bottlenecks of manual segmentation. Cardiac Magnetic Resonance Imaging (CMRI) is a state-of-the-art imaging technique used to acquire vital heart measurements and has received extensive attention from researchers for automatic segmentation. Deep learning methods offer high-precision segmentation but still pose several difficulties, such as pixel homogeneity in nearby organs. The motivated study using the attention mechanism approach was introduced for medical images for automated algorithms. The experiment focuses on observing the impact of the attention mechanism with and without pretrained backbone networks on the UNet model. For the same, three networks are considered: Attention-UNet, Attention-UNet with resnet50 pretrained backbone and Attention-UNet with densenet121 pretrained backbone. The experiments are performed on the ACDC Challenge 2017 dataset. The performance is evaluated by conducting a comparative analysis based on the Dice Coefficient, IoU Coefficient, and cross-entropy loss calculations. The Attention-UNet, Attention-UNet with resnet50 pretrained backbone, and Attention-UNet with densenet121 pretrained backbone networks obtained Dice Coefficients of 0.9889, 0.9720, and 0.9801, respectively, along with corresponding IoU scores of 0.9781, 0.9457, and 0.9612. Results compared with the state-of-the-art methods indicate that the methods are on par with, or even superior in terms of both the Dice coefficient and Intersection-over-union.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
孤独剑完成签到 ,获得积分10
6秒前
滕皓轩完成签到 ,获得积分20
11秒前
tranphucthinh完成签到,获得积分0
27秒前
jyy应助科研通管家采纳,获得10
43秒前
48秒前
chiyudoubao发布了新的文献求助10
53秒前
Owen应助Perry采纳,获得10
54秒前
Breeze完成签到 ,获得积分10
58秒前
chiyudoubao完成签到,获得积分10
59秒前
1分钟前
1分钟前
我是大兴发布了新的文献求助10
1分钟前
Perry发布了新的文献求助10
1分钟前
可夫司机完成签到 ,获得积分10
1分钟前
tianshanfeihe完成签到 ,获得积分10
1分钟前
赘婿应助忧伤的雅香采纳,获得10
1分钟前
beplayer1完成签到,获得积分10
2分钟前
1437594843完成签到 ,获得积分10
2分钟前
NexusExplorer应助Perry采纳,获得10
2分钟前
2分钟前
Bin_Liu完成签到,获得积分10
2分钟前
2分钟前
Perry发布了新的文献求助10
2分钟前
英喆完成签到 ,获得积分10
2分钟前
丁丁完成签到,获得积分10
2分钟前
dashi完成签到 ,获得积分10
2分钟前
HEIKU应助呆呆的猕猴桃采纳,获得10
3分钟前
GankhuyagJavzan完成签到,获得积分10
3分钟前
3分钟前
沙海沉戈完成签到,获得积分0
3分钟前
3分钟前
3分钟前
暖雪儿发布了新的文献求助10
3分钟前
3分钟前
Johnson完成签到 ,获得积分10
3分钟前
cdercder应助忧伤的雅香采纳,获得10
3分钟前
暖雪儿完成签到,获得积分10
3分钟前
CipherSage应助Perry采纳,获得30
3分钟前
mathmotive完成签到,获得积分10
4分钟前
忧伤的雅香完成签到,获得积分10
4分钟前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
材料概论 周达飞 ppt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3808131
求助须知:如何正确求助?哪些是违规求助? 3352745
关于积分的说明 10360245
捐赠科研通 3068739
什么是DOI,文献DOI怎么找? 1685251
邀请新用户注册赠送积分活动 810380
科研通“疑难数据库(出版商)”最低求助积分说明 766076