Water Saturation Prediction Using Machine Learning and Deep Learning. Application to Three Forks Formation in Williston Basin, North Dakota, USA

机器学习 岩石物理学 人工智能 人工神经网络 支持向量机 计算机科学 随机森林 反向传播 回归分析 饱和(图论) 深度学习 数据挖掘 工程类 数学 岩土工程 多孔性 组合数学
作者
Aldjia Boualam,Sofiane Djezzar
标识
DOI:10.1002/9781119389385.ch20
摘要

This chapter presents a study on the construction of a reliable machine learning model for water saturation prediction in thin beds reservoir using conventional logs. The study proposed and built two supervised machine learning algorithms and one deep learning algorithm to predict consistent results. The dataset was pre-processed, and the importance of input variables to model construction was discussed. The results showed that the conventional logs GR, log Rt, NPHI, DT, and RHOB are important input variables to the learning process. More attributes were added to the learning process, such as output volumes from petrophysical analysis, formation members, and the hydrocarbon column. The results demonstrated the effectiveness of applying support vector regression (SVR) in thin beds analysis with a correlation factor of 0.78. The backpropagation neural network and random forest regression algorithms were also applied to the same dataset, with almost similar performance results. Although the program could not model perfectly the peaks due to the complexity of the Three Forks Formation, the study showed that the models are valuable methods for thin beds water saturation prediction using only conventional logs and increasing input variables could improve prediction accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fjejj应助无所谓的啦采纳,获得10
刚刚
我是老大应助无所谓的啦采纳,获得10
刚刚
桐桐应助解美霞采纳,获得10
刚刚
刚刚
852应助无所谓的啦采纳,获得10
刚刚
刚刚
Jasper应助无所谓的啦采纳,获得10
刚刚
研友_VZG7GZ应助无所谓的啦采纳,获得10
刚刚
共享精神应助无所谓的啦采纳,获得10
1秒前
赘婿应助无所谓的啦采纳,获得10
1秒前
FashionBoy应助无所谓的啦采纳,获得10
1秒前
HHL发布了新的文献求助10
1秒前
拂晓发布了新的文献求助10
2秒前
11发布了新的文献求助10
2秒前
烟花应助重要的夏天采纳,获得10
4秒前
dyd发布了新的文献求助30
5秒前
轻松橘子发布了新的文献求助10
6秒前
7秒前
星辰大海应助Clare采纳,获得10
7秒前
CipherSage应助无所谓的啦采纳,获得10
7秒前
CipherSage应助无所谓的啦采纳,获得10
7秒前
斯文败类应助无所谓的啦采纳,获得10
7秒前
赘婿应助无所谓的啦采纳,获得10
7秒前
星辰大海应助无所谓的啦采纳,获得10
7秒前
Ava应助无所谓的啦采纳,获得10
7秒前
科目三应助无所谓的啦采纳,获得10
7秒前
香蕉觅云应助无所谓的啦采纳,获得10
7秒前
积极从蕾应助无所谓的啦采纳,获得10
7秒前
乐乐应助无所谓的啦采纳,获得10
7秒前
小杨要读博完成签到,获得积分10
8秒前
chy完成签到,获得积分20
8秒前
9秒前
9秒前
小AB完成签到 ,获得积分10
9秒前
可爱的函函应助yumi采纳,获得10
10秒前
11秒前
11秒前
yongfeng完成签到,获得积分10
12秒前
12秒前
韩哈哈发布了新的文献求助10
12秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 680
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 540
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
Chinese Buddhist Monasteries: Their Plan and Its Function As a Setting for Buddhist Monastic Life 300
PBSM: Predictive Bi-Preference Stable Matching in Spatial Crowdsourcing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4121812
求助须知:如何正确求助?哪些是违规求助? 3659865
关于积分的说明 11584802
捐赠科研通 3361168
什么是DOI,文献DOI怎么找? 1846838
邀请新用户注册赠送积分活动 911440
科研通“疑难数据库(出版商)”最低求助积分说明 827456