亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine learning algorithms to predict major adverse cardiovascular events in patients with diabetes

狼牙棒 医学 内科学 心肌梗塞 逻辑回归 2型糖尿病 糖尿病 算法 2型糖尿病 血尿素氮 冲程(发动机) 肌酐 心脏病学 计算机科学 内分泌学 传统PCI 机械工程 工程类
作者
Tadesse Melaku Abegaz,Ahmead Baljoon,Oluwaseun Kilanko,Fatimah Sherbeny,Askal Ayalew Ali
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:164: 107289-107289 被引量:11
标识
DOI:10.1016/j.compbiomed.2023.107289
摘要

Major Adverse Cardiovascular Events (MACE) are common complications of type 2 diabetes mellitus (T2DM) that include myocardial infarction (MI), stroke, and heart failure (HF). The objective of the current study was to predict MACE among T2DM patients.Type 2 diabetes mellitus patients above 18 years old were recruited for the study from the All of Us Research Program. Eligible participants were those who took sodium-glucose cotransporter 2 inhibitors. Different Machine learning algorithms: including RandomForest (RF), XGBoost, logistic regression (LR), and weighted ensemble model (WEM) were employed. Clinical attributes, electrolytes and biomarkers were explored in predicting MACE. The feature importance was determined using mean decrease accuracy.Overall, 9, 059 subjects were included in the analyses, of which 5197 (57.4%) were females. The XGBoost Model demonstrated a prediction accuracy of 0.80 [0.78-0.82], which is higher as compared to the RF 0.78[0.76-0.80], the LR model 0.65 [0.62-0.67], and the WEM 0.75 [0.73-0.76], respectively. The classification accuracy of the models for stroke was more than 95%, which was higher than prediction accuracy for MI (∼85%), and HF (∼80%). Phosphate, blood urea nitrogen and troponin levels were the major predictors of MACE.The ML models had shown acceptable performance in predicting MACE in T2DM patients, except the LR model. Phosphate, blood urea nitrogen, and other electrolytes were important predictors of MACE, which is consistent between the individual components of MACE, such as stroke, MI, and HF. These parameters can be calibrated as prognostic parameters of MACE events in T2DM patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
10秒前
2s发布了新的文献求助10
14秒前
15秒前
学术通zzz发布了新的文献求助10
20秒前
含蓄夏瑶发布了新的文献求助10
53秒前
yhgz完成签到,获得积分10
1分钟前
1分钟前
George完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
Eho发布了新的文献求助10
1分钟前
SimonShaw发布了新的文献求助10
3分钟前
blenx完成签到,获得积分10
3分钟前
赎罪完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
李洁发布了新的文献求助10
4分钟前
寒冷的如容完成签到,获得积分20
4分钟前
碳酸芙兰完成签到,获得积分10
4分钟前
tutu完成签到,获得积分10
4分钟前
海盐芝士发布了新的文献求助20
4分钟前
4分钟前
SimonShaw发布了新的文献求助10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
科研通AI5应助科研通管家采纳,获得10
4分钟前
酷波er应助重要纸飞机采纳,获得10
4分钟前
海盐芝士完成签到,获得积分10
5分钟前
5分钟前
小郭完成签到 ,获得积分10
5分钟前
nanfang完成签到 ,获得积分10
5分钟前
田様应助李洁采纳,获得10
5分钟前
5分钟前
李洁完成签到,获得积分10
5分钟前
azuzuzu发布了新的文献求助10
5分钟前
SimonShaw发布了新的文献求助10
5分钟前
SimonShaw完成签到,获得积分10
6分钟前
情怀应助科研通管家采纳,获得10
6分钟前
乾坤侠客LW完成签到,获得积分10
6分钟前
7分钟前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3815788
求助须知:如何正确求助?哪些是违规求助? 3359317
关于积分的说明 10402144
捐赠科研通 3077173
什么是DOI,文献DOI怎么找? 1690198
邀请新用户注册赠送积分活动 813659
科研通“疑难数据库(出版商)”最低求助积分说明 767713