Sergeant‐and‐Soldier Effect in an Organic Room‐Temperature Phosphorescent Host‐Guest System

磷光 材料科学 分子 寄主(生物学) 掺杂剂 激发态 化学物理 兴奋剂 纳米技术 Crystal(编程语言) 光电子学 化学 原子物理学 计算机科学 有机化学 光学 生态学 物理 荧光 生物 程序设计语言
作者
Anthony W. K. Law,Tsz Shing Cheung,Jianyu Zhang,Nelson L. C. Leung,Ryan T. K. Kwok,Zheng Zhao,Herman H‐Y. Sung,Ian D. Williams,Zijie Qiu,Parvej Alam,Jacky W. Y. Lam,Ben Zhong Tang
出处
期刊:Advanced Materials [Wiley]
被引量:2
标识
DOI:10.1002/adma.202410739
摘要

Abstract Host‐guest systems have emerged as an efficient strategy for promoting organic room temperature phosphorescence (RTP). Despite the advantages of doping guest molecules into a host matrix, the complexity of these systems and the lack of techniques to visualize host‐guest interactions at the molecular scale pose significant challenges in understanding the underlying mechanisms. Here, a novel host‐guest RTP system is developed by incorporating low concentrations (1–10 mol%) of TPP‐4C‐BI (guest) into crystalline TPP‐4C‐Cz (host). Utilizing structural isomerism, the guest molecules are regularly incorporated into the host crystal lattice, resulting in phosphorescence quantum yields almost ten times higher than the pure compounds. The system enabled resolution of the molecular packing of the single crystal through X‐ray diffraction, providing unprecedented visualization of host‐guest interactions. A “sergeant‐and‐soldier” effect, where the minority dopant molecules (sergeants) significantly influence the packing arrangement of the host molecules (soldiers), enhances RTP is identified. Further analyses revealed that due to the host molecule's inefficient phosphorescence pathway, its long‐lived dark triplets are channeled to the guest via triplet‐triplet energy transfer (TTET), allowing the excited energy to radiatively decay more efficiently. These insights advance the understanding of RTP mechanisms and offer practical implications for designing high‐efficiency phosphorescent materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
打打应助Cecilia采纳,获得10
1秒前
2秒前
4秒前
穆青完成签到,获得积分10
5秒前
5秒前
5秒前
悲春伤秋关注了科研通微信公众号
6秒前
6秒前
野草发布了新的文献求助10
6秒前
dfxgsw完成签到,获得积分10
6秒前
李健应助俏皮的一德采纳,获得10
7秒前
7秒前
8秒前
wen完成签到,获得积分10
8秒前
开心重要完成签到,获得积分20
8秒前
9秒前
周周发布了新的文献求助10
10秒前
我爱化学发布了新的文献求助10
10秒前
10秒前
小马甲应助爱丽丝采纳,获得10
10秒前
11秒前
呆萌的忆山完成签到,获得积分10
12秒前
乐观鑫完成签到,获得积分10
13秒前
落后寒凡完成签到,获得积分10
13秒前
负数完成签到,获得积分10
15秒前
兴奋的太兰完成签到,获得积分10
16秒前
16秒前
Victor_CHou发布了新的文献求助10
17秒前
科研通AI5应助张凤采纳,获得10
17秒前
fouding发布了新的文献求助10
17秒前
hahahah完成签到,获得积分10
18秒前
22秒前
Sunziy完成签到,获得积分10
23秒前
微笑发布了新的文献求助10
23秒前
高兴不尤完成签到,获得积分10
23秒前
情怀应助尊敬的毛豆采纳,获得10
25秒前
我是老大应助asdf采纳,获得10
25秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3794983
求助须知:如何正确求助?哪些是违规求助? 3339916
关于积分的说明 10298125
捐赠科研通 3056504
什么是DOI,文献DOI怎么找? 1677041
邀请新用户注册赠送积分活动 805105
科研通“疑难数据库(出版商)”最低求助积分说明 762333