Predicting major adverse cardiac events using radiomics nomogram of pericoronary adipose tissue based on CCTA: A multi‐center study

狼牙棒 列线图 医学 接收机工作特性 冠状动脉疾病 单变量 血运重建 计算机辅助设计 放射科 心肌梗塞 内科学 多元统计 机器学习 计算机科学 经皮冠状动脉介入治疗 工程制图 工程类
作者
Zhaoheng Huang,Saikit Lam,Zihe Lin,Linjia Zhou,Liangchen Pei,Anyi Song,Tianle Wang,Yuanpeng Zhang,Rongxing Qi,Sheng Huang
出处
期刊:Medical Physics [Wiley]
卷期号:51 (11): 8348-8361
标识
DOI:10.1002/mp.17324
摘要

Abstract Background The evolution of coronary atherosclerotic heart disease (CAD) is intricately linked to alterations in the pericoronary adipose tissue (PCAT). In recent epochs, characteristics of the PCAT have progressively ascended as focal points of research in CAD risk stratification and individualized clinical decision‐making. Harnessing radiomic methodologies allows for the meticulous extraction of imaging features from these adipose deposits. Coupled with machine learning paradigms, we endeavor to establish predictive models for the onset of major adverse cardiovascular events (MACE). Purpose To appraise the predictive utility of radiomic features of PCAT derived from coronary computed tomography angiography (CCTA) in forecasting MACE. Methods We retrospectively incorporated data from 314 suspected or confirmed CAD patients admitted to our institution from June 2019 to December 2022. An additional cohort of 242 patients from two external institutions was encompassed for external validation. The endpoint under consideration was the occurrence of MACE after a 1‐year follow‐up. MACE was delineated as cardiovascular mortality, newly diagnosed myocardial infarction, hospitalization (or re‐hospitalization) for heart failure, and coronary target vessel revascularization occurring more than 30 days post‐CCTA examination. All enrolled patients underwent CCTA scanning. Radiomic features were meticulously extracted from the optimal diastolic phase axial slices of CCTA images. Feature reduction was achieved through a composite feature selection algorithm, laying the groundwork for the radiomic signature model. Both univariate and multivariate analyses were employed to assess clinical variables. A multifaceted logistic regression analysis facilitated the crafting of a clinical‐radiological‐radiomic combined model (or nomogram). Receiver operating characteristic (ROC) curves, calibration, and decision curve analyses (DCA) were delineated, with the area under the ROC curve (AUCs) computed to gauge the predictive prowess of the clinical model, radiomic model, and the synthesized ensemble. Results A total of 12 radiomic features closely associated with MACE were identified to establish the radiomic model. Multivariate logistic regression results demonstrated that smoking, age, hypertension, and dyslipidemia were significantly correlated with MACE. In the integrated nomogram, which amalgamated clinical, imaging, and radiomic parameters, the diagnostic performance was as follows: 0.970 AUC, 0.949 accuracy (ACC), 0.833 sensitivity (SEN), 0.981 specificity (SPE), 0.926 positive predictive value (PPV), and 0.955 negative predictive value (NPV). The calibration curve indicated a commendable concordance of the nomogram, and the decision curve analysis underscored its superior clinical utility. Conclusions The integration of radiomic signatures from PCAT based on CCTA, clinical indices, and imaging parameters into a nomogram stands as a promising instrument for prognosticating MACE events.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ceeray23发布了新的文献求助20
刚刚
酷波zai完成签到,获得积分10
1秒前
田様应助科研通管家采纳,获得10
1秒前
午见千山应助科研通管家采纳,获得10
1秒前
午见千山应助科研通管家采纳,获得10
1秒前
小二郎应助科研通管家采纳,获得10
1秒前
2秒前
2秒前
闪闪寒荷完成签到 ,获得积分10
3秒前
iceice发布了新的文献求助10
3秒前
4秒前
呵呵喊我完成签到,获得积分10
5秒前
8秒前
8秒前
9秒前
小猫宝发布了新的文献求助10
9秒前
10秒前
dwhnx完成签到,获得积分10
11秒前
xiao发布了新的文献求助10
11秒前
完美世界应助开始游戏55采纳,获得10
12秒前
12秒前
上官若男应助包傲柔采纳,获得10
12秒前
ShengzhangLiu发布了新的文献求助10
13秒前
13秒前
13秒前
dwhnx发布了新的文献求助10
14秒前
张涛发布了新的文献求助10
16秒前
糊涂的天晴完成签到,获得积分20
16秒前
16秒前
安安完成签到,获得积分10
16秒前
万能图书馆应助小猫宝采纳,获得10
16秒前
JamesPei应助tqs采纳,获得10
16秒前
希望天下0贩的0应助iceice采纳,获得10
16秒前
18秒前
一个小柑橘完成签到,获得积分10
19秒前
19秒前
19秒前
chen完成签到 ,获得积分10
20秒前
blair完成签到 ,获得积分10
20秒前
猪猪hero发布了新的文献求助10
20秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3785666
求助须知:如何正确求助?哪些是违规求助? 3331141
关于积分的说明 10250187
捐赠科研通 3046525
什么是DOI,文献DOI怎么找? 1672127
邀请新用户注册赠送积分活动 800994
科研通“疑难数据库(出版商)”最低求助积分说明 759970