Predicting major adverse cardiac events using radiomics nomogram of pericoronary adipose tissue based on CCTA: A multi‐center study

狼牙棒 列线图 医学 接收机工作特性 冠状动脉疾病 单变量 血运重建 计算机辅助设计 放射科 心肌梗塞 内科学 多元统计 机器学习 计算机科学 经皮冠状动脉介入治疗 工程制图 工程类
作者
Zhaoheng Huang,Saikit Lam,Zihe Lin,Linjia Zhou,Liangchen Pei,Anyi Song,Tianle Wang,Yuanpeng Zhang,Rongxing Qi,Sheng Huang
出处
期刊:Medical Physics [Wiley]
卷期号:51 (11): 8348-8361 被引量:5
标识
DOI:10.1002/mp.17324
摘要

Abstract Background The evolution of coronary atherosclerotic heart disease (CAD) is intricately linked to alterations in the pericoronary adipose tissue (PCAT). In recent epochs, characteristics of the PCAT have progressively ascended as focal points of research in CAD risk stratification and individualized clinical decision‐making. Harnessing radiomic methodologies allows for the meticulous extraction of imaging features from these adipose deposits. Coupled with machine learning paradigms, we endeavor to establish predictive models for the onset of major adverse cardiovascular events (MACE). Purpose To appraise the predictive utility of radiomic features of PCAT derived from coronary computed tomography angiography (CCTA) in forecasting MACE. Methods We retrospectively incorporated data from 314 suspected or confirmed CAD patients admitted to our institution from June 2019 to December 2022. An additional cohort of 242 patients from two external institutions was encompassed for external validation. The endpoint under consideration was the occurrence of MACE after a 1‐year follow‐up. MACE was delineated as cardiovascular mortality, newly diagnosed myocardial infarction, hospitalization (or re‐hospitalization) for heart failure, and coronary target vessel revascularization occurring more than 30 days post‐CCTA examination. All enrolled patients underwent CCTA scanning. Radiomic features were meticulously extracted from the optimal diastolic phase axial slices of CCTA images. Feature reduction was achieved through a composite feature selection algorithm, laying the groundwork for the radiomic signature model. Both univariate and multivariate analyses were employed to assess clinical variables. A multifaceted logistic regression analysis facilitated the crafting of a clinical‐radiological‐radiomic combined model (or nomogram). Receiver operating characteristic (ROC) curves, calibration, and decision curve analyses (DCA) were delineated, with the area under the ROC curve (AUCs) computed to gauge the predictive prowess of the clinical model, radiomic model, and the synthesized ensemble. Results A total of 12 radiomic features closely associated with MACE were identified to establish the radiomic model. Multivariate logistic regression results demonstrated that smoking, age, hypertension, and dyslipidemia were significantly correlated with MACE. In the integrated nomogram, which amalgamated clinical, imaging, and radiomic parameters, the diagnostic performance was as follows: 0.970 AUC, 0.949 accuracy (ACC), 0.833 sensitivity (SEN), 0.981 specificity (SPE), 0.926 positive predictive value (PPV), and 0.955 negative predictive value (NPV). The calibration curve indicated a commendable concordance of the nomogram, and the decision curve analysis underscored its superior clinical utility. Conclusions The integration of radiomic signatures from PCAT based on CCTA, clinical indices, and imaging parameters into a nomogram stands as a promising instrument for prognosticating MACE events.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浏阳河发布了新的文献求助10
2秒前
花痴的易真完成签到,获得积分10
5秒前
思琪完成签到,获得积分10
10秒前
周鑫硕完成签到,获得积分10
10秒前
10秒前
kiki完成签到 ,获得积分10
11秒前
思琪发布了新的文献求助10
15秒前
baibai完成签到 ,获得积分10
16秒前
ahh完成签到 ,获得积分10
17秒前
英俊的铭应助你好采纳,获得10
18秒前
浮游应助yang采纳,获得10
18秒前
Biggest完成签到,获得积分10
21秒前
yang应助LQ采纳,获得10
26秒前
科研一坤年完成签到,获得积分10
27秒前
27秒前
Ssyong完成签到 ,获得积分10
32秒前
乘风破浪完成签到,获得积分10
32秒前
析木完成签到,获得积分10
33秒前
Sea_U应助科研通管家采纳,获得10
35秒前
35秒前
Lucas应助科研通管家采纳,获得10
35秒前
yznfly应助科研通管家采纳,获得30
36秒前
SciGPT应助科研通管家采纳,获得10
36秒前
36秒前
36秒前
36秒前
NexusExplorer应助科研通管家采纳,获得30
36秒前
36秒前
36秒前
36秒前
酷波er应助科研通管家采纳,获得10
36秒前
36秒前
36秒前
36秒前
金开完成签到,获得积分10
37秒前
nihao完成签到,获得积分10
38秒前
11马完成签到,获得积分10
39秒前
细心夏瑶完成签到,获得积分10
46秒前
断章完成签到 ,获得积分10
47秒前
一口一个完成签到,获得积分10
52秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 800
求中国石油大学(北京)图书馆的硕士论文,作者董晨,十年前搞太赫兹的 500
Vertebrate Palaeontology, 5th Edition 500
Narrative Method and Narrative form in Masaccio's Tribute Money 500
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4767845
求助须知:如何正确求助?哪些是违规求助? 4104756
关于积分的说明 12697579
捐赠科研通 3822648
什么是DOI,文献DOI怎么找? 2109709
邀请新用户注册赠送积分活动 1134219
关于科研通互助平台的介绍 1015283