亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A CIELAB fusion‐based generative adversarial network for reliable sand–dust removal in open‐pit mines

人工智能 计算机视觉 能见度 计算机科学 色空间 环境科学 图像(数学) 气象学 地理
作者
Xudong Li,Chong Liu,Yangyang Sun,Wujie Li,Jingmin Li
出处
期刊:Journal of Field Robotics [Wiley]
标识
DOI:10.1002/rob.22387
摘要

Abstract Intelligent electric shovels are being developed for intelligent mining in open‐pit mines. Complex environment detection and target recognition based on image recognition technology are prerequisites for achieving intelligent electric shovel operation. However, there is a large amount of sand–dust in open‐pit mines, which can lead to low visibility and color shift in the environment during data collection, resulting in low‐quality images. The images collected for environmental perception in sand–dust environment can seriously affect the target detection and scene segmentation capabilities of intelligent electric shovels. Therefore, developing an effective image processing algorithm to solve these problems and improve the perception ability of intelligent electric shovels has become crucial. At present, methods based on deep learning have achieved good results in image dehazing, and have a certain correlation in image sand–dust removal. However, deep learning heavily relies on data sets, but existing data sets are concentrated in haze environments, with significant gaps in the data set of sand–dust images, especially in open‐pit mining scenes. Another bottleneck is the limited performance associated with traditional methods when removing sand–dust from images, such as image distortion and blurring. To address the aforementioned issues, a method for generating sand–dust image data based on atmospheric physical models and CIELAB color space features is proposed. The impact mechanism of sand–dust on images was analyzed through atmospheric physical models, and the formation of sand–dust images was divided into two parts: blurring and color deviation. We studied the blurring and color deviation effect generation theories based on atmospheric physical models and CIELAB color space, and designed a two‐stage sand–dust image generation method. We also constructed an open‐pit mine sand–dust data set in a real mining environment. Last but not least, this article takes generative adversarial network (GAN) as the research foundation and focuses on the formation mechanism of sand–dust image effects. The CIELAB color features are fused with the discriminator of GAN as basic priors and additional constraints to improve the discrimination effect. By combining the three feature components of CIELAB color space and comparing the algorithm performance, a feature fusion scheme is determined. The results show that the proposed method can generate clear and realistic images well, which helps to improve the performance of target detection and scene segmentation tasks in heavy sand–dust open‐pit mines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
15秒前
sun发布了新的文献求助10
21秒前
孙老师完成签到 ,获得积分10
40秒前
NOME发布了新的文献求助10
45秒前
45秒前
sun完成签到,获得积分20
47秒前
NOME完成签到,获得积分10
59秒前
1分钟前
wuming发布了新的文献求助20
1分钟前
LL完成签到,获得积分10
1分钟前
科研通AI2S应助Sandy采纳,获得10
1分钟前
欣欣发布了新的文献求助10
2分钟前
科研通AI2S应助wuming采纳,获得10
2分钟前
爆米花应助lalalatiancai采纳,获得10
2分钟前
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
lalalatiancai发布了新的文献求助10
2分钟前
2分钟前
yun发布了新的文献求助10
2分钟前
lalalatiancai完成签到,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
Cedric发布了新的文献求助20
3分钟前
3分钟前
科研通AI5应助houhoujiang采纳,获得10
3分钟前
完美世界应助yun采纳,获得10
4分钟前
4分钟前
Cedric发布了新的文献求助20
4分钟前
昭荃完成签到 ,获得积分0
4分钟前
4分钟前
4分钟前
chaotianjiao完成签到 ,获得积分10
5分钟前
Krim完成签到 ,获得积分10
5分钟前
瘦瘦乌龟完成签到 ,获得积分10
5分钟前
6分钟前
David Zhang发布了新的文献求助10
6分钟前
6分钟前
6分钟前
GIA完成签到,获得积分10
6分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3788250
求助须知:如何正确求助?哪些是违规求助? 3333704
关于积分的说明 10263128
捐赠科研通 3049553
什么是DOI,文献DOI怎么找? 1673614
邀请新用户注册赠送积分活动 802090
科研通“疑难数据库(出版商)”最低求助积分说明 760511