Deep Learning-Driven Acceleration of Stochastic Gradient Methods for Well Location Optimization Under Uncertainty

加速度 计算机科学 人工智能 随机优化 数学优化 数学 物理 经典力学
作者
Esmail Eltahan,Kamy Sepehrnoori,Faruk O. Alpak
出处
期刊:SPE Annual Technical Conference and Exhibition 被引量:1
标识
DOI:10.2118/220754-ms
摘要

Abstract We have developed the deep-learning-accelerated-gradient (DLAG) algorithm, a novel solution for well location optimization (WLO) problems that leverages data collected from the explored parameter space to accelerate optimization. During optimization, we collect data to train a deep neural network (NN), creating a map from well-location parameters to the objective function. We utilize the analytical gradient of the NN, resulting in an effective search direction while saving the computational cost associated with stochastic-gradient perturbations. Our method features a novel NN architecture, the Spatial Pairwise Interaction Network (SPINet) with independent and contextual neural pathways (NPs), designed to capture the primary well characteristics, and its complex interactions with the neighboring wells. For the contextual NP, we explore using the popular Attention mechanism and simpler mechanism with weight-sharing Multilayer Perceptron (MLP) layers. To evaluate the architectures, we designed the Bird Ensemble (BE) test problem which resembles the structure of the WLO problem. The comparison between DL architectures reveals that the NP with a weight-sharing mechanism has superior performance in terms of MSE error and gradient accuracy. The weight-sharing structure allows the model to efficiently model relationships with shared parameters while maintaining invariance to input permutations. For the test function, utilizing DLAG drastically improves computational efficiency, reducing the number of function evaluations required to achieve the same level of optimization by one to two orders of magnitude. Following validation of this test problem, we successfully applied our method to optimizing locations of injection and production wells in the Egg reservoir model. To alleviate random artifacts and the inevitable possibility of encountering local minima, we conducted 20 iterations of the WLO problems both with and without DLAG. The results reveal that, on average, our DLAG optimization method is more efficient than the traditional approach. This efficiency gain is particularly impactful for real-world applications where project timelines are tightly constrained.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彭于晏应助杨钧贺采纳,获得10
刚刚
一页墨城完成签到,获得积分10
刚刚
赘婿应助li采纳,获得10
刚刚
刚刚
四叶草发布了新的文献求助10
刚刚
寒冷无色完成签到,获得积分10
刚刚
亚当寇克发布了新的文献求助10
刚刚
1秒前
1秒前
小二郎应助科研通管家采纳,获得10
1秒前
深情安青应助科研通管家采纳,获得10
1秒前
1秒前
浮游应助科研通管家采纳,获得10
1秒前
充电宝应助科研通管家采纳,获得10
1秒前
雨姐科研应助科研通管家采纳,获得10
1秒前
上官若男应助科研通管家采纳,获得10
1秒前
丘比特应助科研通管家采纳,获得10
2秒前
BowieHuang应助科研通管家采纳,获得10
2秒前
一叶知秋应助科研通管家采纳,获得10
2秒前
乐乐应助科研通管家采纳,获得30
2秒前
汉堡包应助科研通管家采纳,获得10
2秒前
2秒前
所所应助科研通管家采纳,获得10
2秒前
Ava应助科研通管家采纳,获得10
2秒前
搜集达人应助科研通管家采纳,获得10
2秒前
Owen应助科研通管家采纳,获得10
2秒前
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
桐桐应助科研通管家采纳,获得10
2秒前
华仔应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
雨姐科研应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
3秒前
wanci应助科研通管家采纳,获得20
3秒前
传奇3应助美好海白采纳,获得10
3秒前
Ava应助科研通管家采纳,获得10
3秒前
复苏应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
Improving Teacher Morale and Motivation 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5556625
求助须知:如何正确求助?哪些是违规求助? 4641429
关于积分的说明 14665012
捐赠科研通 4583214
什么是DOI,文献DOI怎么找? 2514041
邀请新用户注册赠送积分活动 1488544
关于科研通互助平台的介绍 1459189