A Game-Theoretic Framework for Generic Second-Order Traffic Flow Models Using Mean Field Games and Adversarial Inverse Reinforcement Learning

对抗制 强化学习 博弈论 钢筋 流量(计算机网络) 反向 计算机科学 订单(交换) 流量(数学) 数学优化 人工智能 数学 数理经济学 工程类 经济 计算机安全 几何学 结构工程 财务
作者
Zhaobin Mo,Xu Chen,Xuan Di,Elisa Iacomini,Chiara Segala,Michaël Herty,Mathieu Laurière
出处
期刊:Transportation Science [Institute for Operations Research and the Management Sciences]
卷期号:58 (6): 1403-1426 被引量:1
标识
DOI:10.1287/trsc.2024.0532
摘要

A traffic system can be interpreted as a multiagent system, wherein vehicles choose the most efficient driving approaches guided by interconnected goals or strategies. This paper aims to develop a family of mean field games (MFG) for generic second-order traffic flow models (GSOM), in which cars control individual velocity to optimize their objective functions. GSOMs do not generally assume that cars optimize self-interested objectives, so such a game-theoretic reinterpretation offers insights into the agents’ underlying behaviors. In general, an MFG allows one to model individuals on a microscopic level as rational utility-optimizing agents while translating rich microscopic behaviors to macroscopic models. Building on the MFG framework, we devise a new class of second-order traffic flow MFGs (i.e., GSOM-MFG), which control cars’ acceleration to ensure smooth velocity change. A fixed-point algorithm with fictitious play technique is developed to solve GSOM-MFG numerically. In numerical examples, different traffic patterns are presented under different cost functions. For real-world validation, we further use an inverse reinforcement learning approach (IRL) to uncover the underlying cost function on the next-generation simulation (NGSIM) data set. We formulate the problem of inferring cost functions as a min-max game and use an apprenticeship learning algorithm to solve for cost function coefficients. The results show that our proposed GSOM-MFG is a generic framework that can accommodate various cost functions. The Aw Rascle and Zhang (ARZ) and Light-Whitham-Richards (LWR) fundamental diagrams in traffic flow models belong to our GSOM-MFG when costs are specified. History: This paper has been accepted for the Transportation Science Special Issue on ISTTT25 Conference. Funding: X. Di is supported by the National Science Foundation [CAREER Award CMMI-1943998]. E. Iacomini is partially supported by the Italian Research Center on High-Performance Computing, Big Data and Quantum Computing (ICSC) funded by MUR Missione 4-Next Generation EU (NGEU) [Spoke 1 “FutureHPC & BigData”]. C. Segala and M. Herty thank the Deutsche Forschungsgemeinschaft (DFG) for financial support [Grants 320021702/GRK2326, 333849990/IRTG-2379, B04, B05, and B06 of 442047500/SFB1481, HE5386/18-1,19-2,22-1,23-1,25-1, ERS SFDdM035; Germany’s Excellence Strategy EXC-2023 Internet of Production 390621612; and Excellence Strategy of the Federal Government and the Länder]. Support through the EU DATAHYKING is also acknowledged. This work was also funded by the DFG [TRR 154, Mathematical Modelling, Simulation and Optimization Using the Example of Gas Networks, Projects C03 and C05, Project No. 239904186]. Moreover, E. Iacomini and C. Segala are members of the Indam GNCS (Italian National Group of Scientific Calculus).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JJBOND完成签到,获得积分10
1秒前
曹科发布了新的文献求助20
2秒前
无奈的萍发布了新的文献求助10
2秒前
浩二发布了新的文献求助10
3秒前
深情安青应助1234567890l采纳,获得10
4秒前
科研通AI5应助Master采纳,获得10
6秒前
Katherine完成签到,获得积分10
6秒前
6秒前
高兴的路人完成签到,获得积分20
7秒前
hhan完成签到,获得积分10
8秒前
可可应助富二蛋采纳,获得10
9秒前
9秒前
科研通AI5应助高兴的路人采纳,获得30
11秒前
hhan发布了新的文献求助30
11秒前
12秒前
13秒前
晚秋北斗完成签到 ,获得积分10
15秒前
hh发布了新的文献求助10
16秒前
李李05完成签到,获得积分10
17秒前
Master发布了新的文献求助10
18秒前
18秒前
左又柔完成签到,获得积分10
19秒前
山楂发布了新的文献求助10
21秒前
搜集达人应助无奈的萍采纳,获得10
21秒前
22秒前
HaHa007完成签到,获得积分10
23秒前
火星上的寻琴完成签到,获得积分10
23秒前
23秒前
左又柔发布了新的文献求助10
23秒前
Guo完成签到,获得积分10
25秒前
NexusExplorer应助hh采纳,获得10
25秒前
syr完成签到,获得积分10
26秒前
26秒前
木南完成签到,获得积分10
27秒前
27秒前
28秒前
Guo发布了新的文献求助10
28秒前
28秒前
Yuuki发布了新的文献求助10
28秒前
阔达黎云完成签到,获得积分10
29秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781499
求助须知:如何正确求助?哪些是违规求助? 3327165
关于积分的说明 10229864
捐赠科研通 3042037
什么是DOI,文献DOI怎么找? 1669761
邀请新用户注册赠送积分活动 799278
科研通“疑难数据库(出版商)”最低求助积分说明 758757