Unlocking the Potential of Kesterite Solar Cells: Quantum Confinement Structures to Pave the Way for High‐Performance Photovoltaic Technologies

锌黄锡矿 光伏系统 量子点 工程物理 纳米技术 材料科学 光电子学 太阳能电池 物理 工程类 捷克先令 电气工程
作者
S. R. Mohanty,P. Chandrasekar,Sudarsan Sahoo,Soumyaranjan Rouray
出处
期刊:Physica Status Solidi A-applications and Materials Science [Wiley]
卷期号:221 (23)
标识
DOI:10.1002/pssa.202400341
摘要

Advancements in solar cell research are constantly pushing the boundaries of energy efficiency and sustainability. Kesterite materials have gained attention for their positive environmental impact and are being considered as promising candidate for renewable energy. These materials show potential for improving efficiency through creative structural modifications. Quantum well (QW) solar cells, utilizing kesterite materials, provide a combination of high efficiency, cost‐effectiveness, and environmental sustainability. These materials have a wide range of applications, from residential and commercial solar panels to portable and flexible devices, building‐integrated photovoltaics, off‐grid systems, and even space applications. This study investigates the improvement of solar cell efficiency by incorporating kesterite‐based nanostructures with quantum confinement technology. The key aspects of the analysis are measure performance of solar cell with variation in S/Se mole fraction of CZTSSe absorber layer. The special care is given to analyze behavior of QW structures with CZTSSe as the well material. Additionally, the study is expanded to an analysis of broad range of mole fraction variation in CZTSSe. Finally, the structure is optimized by adjusting the well width. Moreover, a remarkable efficiency of 31.33% is achieved with well width of 20 nm and the mole fraction of 0.8. This finding highlights the importance of customizing composition and nanostructure in solar cell design to improve efficiency and push forward renewable energy technologies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
852应助派大星采纳,获得10
1秒前
小詹完成签到,获得积分10
2秒前
weiyu_u发布了新的文献求助50
2秒前
量子星尘发布了新的文献求助10
3秒前
4秒前
饱满鞅发布了新的文献求助10
5秒前
5秒前
6秒前
6秒前
yy完成签到,获得积分10
6秒前
丘比特应助山楂采纳,获得10
6秒前
ww完成签到,获得积分20
10秒前
pp发布了新的文献求助10
11秒前
11秒前
Na发布了新的文献求助10
11秒前
12秒前
Wind应助yyh采纳,获得10
13秒前
风清扬应助Pupil采纳,获得10
15秒前
Jerry完成签到,获得积分10
16秒前
16秒前
16秒前
19秒前
19秒前
打打应助走四方采纳,获得10
20秒前
20秒前
21秒前
21秒前
小郑发布了新的文献求助10
22秒前
pbj发布了新的文献求助10
22秒前
23秒前
tenacity完成签到,获得积分20
24秒前
yyh完成签到,获得积分10
25秒前
DocLSQ发布了新的文献求助10
26秒前
Wqhao完成签到,获得积分10
27秒前
量子星尘发布了新的文献求助10
28秒前
斯文败类应助pbj采纳,获得10
31秒前
乐乐应助戏子采纳,获得10
32秒前
32秒前
33秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Building Quantum Computers 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Molecular Cloning: A Laboratory Manual (Fourth Edition) 500
Social Epistemology: The Niches for Knowledge and Ignorance 500
优秀运动员运动寿命的人文社会学因素研究 500
Encyclopedia of Mathematical Physics 2nd Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4241365
求助须知:如何正确求助?哪些是违规求助? 3775024
关于积分的说明 11854787
捐赠科研通 3429936
什么是DOI,文献DOI怎么找? 1882634
邀请新用户注册赠送积分活动 934478
科研通“疑难数据库(出版商)”最低求助积分说明 841041