Histopathological Differential Diagnosis and Estrogen Receptor/Progesterone Receptor Immunohistochemical Evaluation of Breast Carcinoma Using a Deep Learning-Based Artificial Intelligence Architecture

孕酮受体 免疫组织化学 雌激素受体 雌激素 乳腺癌 病理 鉴别诊断 生物 乳腺癌 医学 内科学 癌症 内分泌学
作者
Zhi Han,Shihong Ding,Baichen Liu,Yandong Tang,Xueshan Qiu,Liang Wang,Huanyu Zhao
出处
期刊:American Journal of Pathology [Elsevier BV]
标识
DOI:10.1016/j.ajpath.2024.08.011
摘要

In breast carcinoma, invasive ductal carcinoma (IDC) is the most common histopathologic subtype, and ductal carcinoma in situ (DCIS) is a precursor of IDC. They are often concomitant. The immunohistochemical staining of estrogen receptor (ER)/progesterone receptor (PR) in IDC/DCIS on whole slide histopathologic images (WSIs) can predict the prognosis of patients. However, the interobserver variability among pathologists in reading WSIs is inevitable. Thus, artificial intelligence (AI) technology is crucial. Herein, IDC/DCIS detection was conducted by a deep learning approach, including faster region-based convolutional neural network (Faster R-CNN), RetinaNet, single-shot multibox detector 300 (SSD300), you only look once (YOLO) v3, YOLOv5, YOLOv7, YOLOv8, and Swin transformer. Their performance was estimated by mean average precision (mAP) values. Cell recognition and counting were performed using AI technology to evaluate the intensity and proportion of ER/PR-immunostained cancer cells in IDC/DCIS. A three-round ring study (RS) was conducted to assess WSIs. A database for modelling the underlying probability distribution of a data set with labels was established. YOLOv8 exhibits the highest detection performance with an mAP at 0.5 of 0.944 and an mAP at 0.5 to 0.95 of 0.790. With the assistance of YOLOv8, the scoring concordance across all pathologists was boosted to excellent in RS3 (0.970) from moderate in RS1 (0.724) and good in RS2 (0.812). Deep learning detection can be applied in the clinicopathologic field. To facilitate the histopathologic diagnosis of IDC/DCIS and immunostaining scoring of ER/PR, a novel AI architecture and well-organized data set were developed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
jiang发布了新的文献求助10
1秒前
小丹小丹完成签到 ,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
李扬发布了新的文献求助10
1秒前
大模型应助夏峰采纳,获得10
2秒前
sunshine完成签到,获得积分10
2秒前
Serendipity应助端庄的夏寒采纳,获得10
4秒前
科研通AI5应助端庄的夏寒采纳,获得10
4秒前
5秒前
6秒前
CoCoCat完成签到,获得积分20
7秒前
7秒前
8秒前
8秒前
丘比特应助呵呵采纳,获得10
9秒前
jiang完成签到,获得积分20
11秒前
奕尧完成签到,获得积分10
11秒前
小叶发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助10
12秒前
12秒前
一叶扁舟完成签到,获得积分10
13秒前
13秒前
13秒前
杨杨杨完成签到,获得积分10
15秒前
cc完成签到,获得积分10
15秒前
夏峰发布了新的文献求助10
15秒前
柚哦发布了新的文献求助10
16秒前
充电宝应助眼睛大胡萝卜采纳,获得10
16秒前
深情安青应助榴莲姑娘采纳,获得10
16秒前
小恐龙完成签到,获得积分10
16秒前
文献达人完成签到,获得积分10
17秒前
科研通AI6应助yzm采纳,获得10
17秒前
科研通AI6应助潘潘采纳,获得10
17秒前
canvas发布了新的文献求助10
18秒前
19秒前
善学以致用应助涨涨采纳,获得10
21秒前
21秒前
21秒前
重要元容完成签到,获得积分10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
高温高圧下融剤法によるダイヤモンド単結晶の育成と不純物の評価 5000
Treatise on Geochemistry (Third edition) 1600
Vertebrate Palaeontology, 5th Edition 500
ISO/IEC 24760-1:2025 Information security, cybersecurity and privacy protection — A framework for identity management 500
碳捕捉技术能效评价方法 500
Optimization and Learning via Stochastic Gradient Search 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4710737
求助须知:如何正确求助?哪些是违规求助? 4075458
关于积分的说明 12601972
捐赠科研通 3777565
什么是DOI,文献DOI怎么找? 2086730
邀请新用户注册赠送积分活动 1113382
科研通“疑难数据库(出版商)”最低求助积分说明 990920