亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Bayesian semi‐parametric scalar‐on‐function regression with measurement error using instrumental variables

协变量 观测误差 统计 贝叶斯概率 频数推理 参数统计 回归分析 计算机科学 回归 变量模型中的错误 计量经济学 数学 贝叶斯推理
作者
Roger S. Zoh,Yuanyuan Luan,Lan Xue,David B. Allison,Carmen D. Tekwe
出处
期刊:Statistics in Medicine [Wiley]
卷期号:43 (21): 4043-4054 被引量:2
标识
DOI:10.1002/sim.10165
摘要

Wearable devices such as the ActiGraph are now commonly used in research to monitor or track physical activity. This trend corresponds with the growing need to assess the relationships between physical activity and health outcomes, such as obesity, accurately. Device-based physical activity measures are best treated as functions when assessing their associations with scalar-valued outcomes such as body mass index. Scalar-on-function regression (SoFR) is a suitable regression model in this setting. Most estimation approaches in SoFR assume that the measurement error in functional covariates is white noise. Violating this assumption can lead to underestimating model parameters. There are limited approaches to correcting measurement errors for frequentist methods and none for Bayesian methods in this area. We present a non-parametric Bayesian measurement error-corrected SoFR model that relaxes all the constraining assumptions often involved with these models. Our estimation relies on an instrumental variable allowing a time-varying biasing factor, a significant departure from the current generalized method of moment (GMM) approach. Our proposed method also permits model-based grouping of the functional covariate following measurement error correction. This grouping of the measurement error-corrected functional covariate allows additional ease of interpretation of how the different groups differ. Our method is easy to implement, and we demonstrate its finite sample properties in extensive simulations. Finally, we applied our method to data from the National Health and Examination Survey to assess the relationship between wearable device-based measures of physical activity and body mass index in adults in the United States.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
卓头OvQ发布了新的文献求助10
2秒前
4秒前
顾矜应助jclin采纳,获得10
7秒前
9秒前
11秒前
13秒前
上官若男应助卓头OvQ采纳,获得10
14秒前
慈祥的雅寒完成签到,获得积分10
15秒前
Once发布了新的文献求助10
16秒前
清心路人应助zztOvO采纳,获得10
17秒前
动听的涵山完成签到,获得积分10
18秒前
22秒前
碳水化合物完成签到,获得积分10
25秒前
乐观生活发布了新的文献求助10
26秒前
Once完成签到,获得积分10
27秒前
充电宝应助张三采纳,获得20
34秒前
王木木完成签到 ,获得积分10
34秒前
jclin完成签到,获得积分10
37秒前
完美世界应助乐观生活采纳,获得10
38秒前
Simpson完成签到 ,获得积分0
39秒前
科研通AI6应助jclin采纳,获得10
40秒前
yann应助幸福元灵采纳,获得10
41秒前
慕青应助水蜜桃一大钵采纳,获得10
50秒前
ceeray23发布了新的文献求助20
58秒前
1分钟前
莫名是个小疯子应助LSY采纳,获得10
1分钟前
carbonado发布了新的文献求助30
1分钟前
传奇3应助hrpppp采纳,获得10
1分钟前
jclin发布了新的文献求助10
1分钟前
1分钟前
嘉欣完成签到 ,获得积分10
1分钟前
11122完成签到,获得积分10
1分钟前
Owen应助MinQi采纳,获得10
1分钟前
11122发布了新的文献求助10
1分钟前
木有完成签到 ,获得积分10
1分钟前
luckyalias完成签到 ,获得积分10
1分钟前
小二郎应助辛巴采纳,获得10
1分钟前
一号小玩家完成签到,获得积分10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5077035
求助须知:如何正确求助?哪些是违规求助? 4296314
关于积分的说明 13386817
捐赠科研通 4118612
什么是DOI,文献DOI怎么找? 2255417
邀请新用户注册赠送积分活动 1259879
关于科研通互助平台的介绍 1192954