A Bayesian semi‐parametric scalar‐on‐function regression with measurement error using instrumental variables

协变量 观测误差 统计 贝叶斯概率 频数推理 参数统计 回归分析 计算机科学 回归 变量模型中的错误 计量经济学 数学 贝叶斯推理
作者
Roger S. Zoh,Yuanyuan Luan,Lan Xue,David B. Allison,Carmen D. Tekwe
出处
期刊:Statistics in Medicine [Wiley]
卷期号:43 (21): 4043-4054 被引量:2
标识
DOI:10.1002/sim.10165
摘要

Wearable devices such as the ActiGraph are now commonly used in research to monitor or track physical activity. This trend corresponds with the growing need to assess the relationships between physical activity and health outcomes, such as obesity, accurately. Device-based physical activity measures are best treated as functions when assessing their associations with scalar-valued outcomes such as body mass index. Scalar-on-function regression (SoFR) is a suitable regression model in this setting. Most estimation approaches in SoFR assume that the measurement error in functional covariates is white noise. Violating this assumption can lead to underestimating model parameters. There are limited approaches to correcting measurement errors for frequentist methods and none for Bayesian methods in this area. We present a non-parametric Bayesian measurement error-corrected SoFR model that relaxes all the constraining assumptions often involved with these models. Our estimation relies on an instrumental variable allowing a time-varying biasing factor, a significant departure from the current generalized method of moment (GMM) approach. Our proposed method also permits model-based grouping of the functional covariate following measurement error correction. This grouping of the measurement error-corrected functional covariate allows additional ease of interpretation of how the different groups differ. Our method is easy to implement, and we demonstrate its finite sample properties in extensive simulations. Finally, we applied our method to data from the National Health and Examination Survey to assess the relationship between wearable device-based measures of physical activity and body mass index in adults in the United States.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星星海完成签到,获得积分20
刚刚
mysunshine完成签到 ,获得积分10
1秒前
3秒前
白樱恋曲发布了新的文献求助10
3秒前
khh完成签到 ,获得积分10
4秒前
夏荷雪石完成签到,获得积分20
7秒前
lly5290完成签到 ,获得积分10
8秒前
黎明发布了新的文献求助10
8秒前
Liuwentao94624完成签到,获得积分10
8秒前
我是老大应助TORCH采纳,获得10
9秒前
一念来回完成签到,获得积分10
12秒前
黎明完成签到,获得积分10
13秒前
害羞大碗发布了新的文献求助10
14秒前
georgia_qiao完成签到,获得积分10
14秒前
16秒前
xianglinnnn完成签到,获得积分10
17秒前
19秒前
20秒前
森源海完成签到,获得积分10
21秒前
22秒前
ly发布了新的文献求助10
23秒前
跳不起来的大神完成签到 ,获得积分10
23秒前
锂安完成签到,获得积分10
24秒前
完美世界应助11122采纳,获得10
26秒前
26秒前
Skywalker完成签到,获得积分10
28秒前
28秒前
不当脆脆鲨完成签到,获得积分10
28秒前
白樱恋曲完成签到,获得积分10
28秒前
nicebro完成签到,获得积分10
28秒前
28秒前
温柔的沉鱼完成签到,获得积分10
30秒前
31秒前
cy发布了新的文献求助10
31秒前
叶泽完成签到,获得积分10
32秒前
32秒前
33秒前
zh_li完成签到,获得积分10
33秒前
DKY发布了新的文献求助10
34秒前
35秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Voyage au bout de la révolution: de Pékin à Sochaux 700
First Farmers: The Origins of Agricultural Societies, 2nd Edition 500
Simulation of High-NA EUV Lithography 400
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
The Rise & Fall of Classical Legal Thought 260
The effect of four weeks of plyometric training on reactive strength index and leg stiffness is sport dependent 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4332810
求助须知:如何正确求助?哪些是违规求助? 3844769
关于积分的说明 12010050
捐赠科研通 3485403
什么是DOI,文献DOI怎么找? 1912862
邀请新用户注册赠送积分活动 956310
科研通“疑难数据库(出版商)”最低求助积分说明 857167