亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Application of artificial intelligence in drug design: A review

计算机科学 广告 制药工业 过程(计算) 人工智能 药品 领域(数学) 药物发现 风险分析(工程) 数据科学 机器学习 医学 药理学 生物信息学 操作系统 纯数学 生物 数学
作者
Simrandeep Singh,Navjot Kaur,Anita Gehlot
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:179: 108810-108810 被引量:15
标识
DOI:10.1016/j.compbiomed.2024.108810
摘要

Artificial intelligence (AI) is a field of computer science that involves acquiring information, developing rule bases, and mimicking human behaviour. The fundamental concept behind AI is to create intelligent computer systems that can operate with minimal human intervention or without any intervention at all. These rule-based systems are developed using various machine learning and deep learning models, enabling them to solve complex problems. AI is integrated with these models to learn, understand, and analyse provided data. The rapid advancement of Artificial Intelligence (AI) is reshaping numerous industries, with the pharmaceutical sector experiencing a notable transformation. AI is increasingly being employed to automate, optimize, and personalize various facets of the pharmaceutical industry, particularly in pharmacological research. Traditional drug development methods areknown for being time-consuming, expensive, and less efficient, often taking around a decade and costing billions of dollars. The integration of artificial intelligence (AI) techniques addresses these challenges by enabling the examination of compounds with desired properties from a vast pool of input drugs. Furthermore, it plays a crucial role in drug screening by predicting toxicity, bioactivity, ADME properties (absorption, distribution, metabolism, and excretion), physicochemical properties, and more. AI enhances the drug design process by improving the efficiency and accuracy of predicting drug behaviour, interactions, and properties. These approaches further significantly improve the precision of drug discovery processes and decrease clinical trial costs leading to the development of more effective drugs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
安静的雨发布了新的文献求助10
2秒前
深情安青应助安静的雨采纳,获得10
12秒前
安静的雨完成签到,获得积分10
18秒前
22秒前
HS发布了新的文献求助10
30秒前
1分钟前
Fu发布了新的文献求助10
1分钟前
CipherSage应助yang采纳,获得10
1分钟前
1分钟前
1分钟前
yang发布了新的文献求助10
1分钟前
clearsky应助科研通管家采纳,获得10
1分钟前
yang完成签到,获得积分10
1分钟前
1分钟前
唐泽雪穗发布了新的文献求助40
1分钟前
SciGPT应助酷酷李可爱婕采纳,获得10
2分钟前
橙汁椰子汁完成签到,获得积分10
2分钟前
3分钟前
3分钟前
clearsky应助科研通管家采纳,获得10
3分钟前
Vicky完成签到,获得积分10
3分钟前
科研通AI2S应助Vicky采纳,获得10
3分钟前
3分钟前
唐泽雪穗发布了新的文献求助40
3分钟前
3分钟前
4分钟前
4分钟前
Raven发布了新的文献求助10
4分钟前
4分钟前
jinyue完成签到 ,获得积分10
4分钟前
共享精神应助Raven采纳,获得10
4分钟前
Ava应助微笑二娘采纳,获得10
4分钟前
4分钟前
huxuehong完成签到 ,获得积分10
4分钟前
小哈完成签到 ,获得积分10
4分钟前
5分钟前
李爱国应助科研通管家采纳,获得10
5分钟前
wanci应助科研通管家采纳,获得10
5分钟前
唐泽雪穗发布了新的文献求助40
5分钟前
CipherSage应助ysss0831采纳,获得10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Nuclear Fuel Behaviour under RIA Conditions 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Parenchymal volume and functional recovery after clamped partial nephrectomy: potential discrepancies 300
Optimization and Learning via Stochastic Gradient Search 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4682068
求助须知:如何正确求助?哪些是违规求助? 4057710
关于积分的说明 12545356
捐赠科研通 3753017
什么是DOI,文献DOI怎么找? 2072733
邀请新用户注册赠送积分活动 1101828
科研通“疑难数据库(出版商)”最低求助积分说明 981119