ARR-GCN: Anatomy-Relation Reasoning Graph Convolutional Network for Automatic Fine-Grained Segmentation of Organ's Surgical Anatomy

分割 计算机科学 判别式 人工智能 手术计划 图形 模式识别(心理学) 解剖 医学 放射科 理论计算机科学
作者
Yinli Tian,Wenjian Qin,Fu‐Shan Xue,R. Lambo,Meiyan Yue,Songhui Diao,Lequan Yu,Yaoqin Xie,Hailin Cao,Shuo Li
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:27 (7): 3258-3269
标识
DOI:10.1109/jbhi.2023.3270664
摘要

Anatomical resection (AR) based on anatomical sub-regions is a promising method of precise surgical resection, which has been proven to improve long-term survival by reducing local recurrence. The fine-grained segmentation of an organ's surgical anatomy (FGS-OSA), i.e., segmenting an organ into multiple anatomic regions, is critical for localizing tumors in AR surgical planning. However, automatically obtaining FGS-OSA results in computer-aided methods faces the challenges of appearance ambiguities among sub-regions (i.e., inter-sub-region appearance ambiguities) caused by similar HU distributions in different sub-regions of an organ's surgical anatomy, invisible boundaries, and similarities between anatomical landmarks and other anatomical information. In this paper, we propose a novel fine-grained segmentation framework termed the "anatomic relation reasoning graph convolutional network" (ARR-GCN), which incorporates prior anatomic relations into the framework learning. In ARR-GCN, a graph is constructed based on the sub-regions to model the class and their relations. Further, to obtain discriminative initial node representations of graph space, a sub-region center module is designed. Most importantly, to explicitly learn the anatomic relations, the prior anatomic-relations among the sub-regions are encoded in the form of an adjacency matrix and embedded into the intermediate node representations to guide framework learning. The ARR-GCN was validated on two FGS-OSA tasks: i) liver segments segmentation, and ii) lung lobes segmentation. Experimental results on both tasks outperformed other state-of-the-art segmentation methods and yielded promising performances by ARR-GCN for suppressing ambiguities among sub-regions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
aaaa完成签到,获得积分10
1秒前
doclarrin完成签到 ,获得积分10
4秒前
二世小卒完成签到 ,获得积分10
11秒前
慕青应助town1223采纳,获得10
15秒前
hdc12138完成签到,获得积分10
17秒前
pjxxx完成签到 ,获得积分10
19秒前
21秒前
24秒前
科研通AI5应助djbj2022采纳,获得10
25秒前
hanliulaixi完成签到 ,获得积分10
27秒前
loren313完成签到,获得积分0
27秒前
美满的皮卡丘完成签到 ,获得积分10
28秒前
搜集达人应助雷寒云采纳,获得10
33秒前
33秒前
百香果bxg完成签到 ,获得积分10
38秒前
djbj2022发布了新的文献求助10
39秒前
43秒前
乒坛巨人完成签到 ,获得积分10
43秒前
dd完成签到 ,获得积分10
47秒前
12完成签到 ,获得积分10
47秒前
雷寒云发布了新的文献求助10
50秒前
iman完成签到,获得积分10
50秒前
1分钟前
谨慎鹏涛完成签到 ,获得积分10
1分钟前
冰留完成签到 ,获得积分10
1分钟前
w婷完成签到 ,获得积分10
1分钟前
feitian201861完成签到,获得积分10
1分钟前
zhangjianzeng完成签到 ,获得积分10
1分钟前
魔幻安南完成签到 ,获得积分10
1分钟前
1分钟前
氟锑酸完成签到 ,获得积分10
1分钟前
wishe完成签到,获得积分10
1分钟前
刘辰完成签到 ,获得积分10
1分钟前
半斤完成签到 ,获得积分10
1分钟前
蓝豆子完成签到 ,获得积分10
1分钟前
哈拉斯完成签到,获得积分10
1分钟前
柚C美式完成签到 ,获得积分10
1分钟前
巫马白亦完成签到,获得积分10
1分钟前
龙在天涯完成签到,获得积分10
1分钟前
1分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3788357
求助须知:如何正确求助?哪些是违规求助? 3333722
关于积分的说明 10263216
捐赠科研通 3049630
什么是DOI,文献DOI怎么找? 1673639
邀请新用户注册赠送积分活动 802120
科研通“疑难数据库(出版商)”最低求助积分说明 760511