Detection and infected area segmentation of apple fire blight using image processing and deep transfer learning for site-specific management

多光谱图像 人工智能 RGB颜色模型 归一化差异植被指数 计算机科学 遥感 深度学习 植被(病理学) 卷积神经网络 计算机视觉 模式识别(心理学) 叶面积指数 地理 生态学 生物 医学 病理
作者
Md Sultan Mahmud,Long He,Azlan Zahid,Paul Heinemann,Daeun Choi,Grzegorz Krawczyk,Heping Zhu
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:209: 107862-107862 被引量:8
标识
DOI:10.1016/j.compag.2023.107862
摘要

Advanced sensing technologies and deep learning models are needed for automatic recognition of pathogens to protect trees in orchards. This study developed a fire blight disease detection and infected area segmentation system using image processing and deep learning approaches to automate the detection process in a complex apple orchard environment for site-specific management. Two types of images were acquired: multispectral images from an unmanned aerial vehicle (UAV) using a multispectral camera and red–greenblue (RGB) images from the ground using two different cameras. Multispectral images were preprocessed and used for image feature analysis by calculating vegetation indices, including excessive blue (ExB), normalized difference vegetation index (NDVI), green normalized difference vegetation index (GNDVI), red-edge normalized difference vegetation index (RENDVI), modified ratio vegetation index (RVI), and triangular blueness index (TBI). Vegetation indices were calculated from a total of 60 multispectral images (30 heathy and 30 fire blight infected). Results showed that RVI was most sensitive to fire blight infection among the six indices. A support vector machine model was used to classify unhealthy tree canopies. A Mask Region-Convolutional Neural Network (Mask R-CNN) based deep learning model was developed from RGB infected images. A total of 880 images were used for training, and 220 images were used for validation. Another 110 images were used for testing the trained Mask R-CNN model. A precision of 92.8 % and recall of 91.2 % were obtained by detecting the infected canopies using a ResNet-101 backbone and intersection over union (IoU) threshold of 0.7. The high precision demonstrates the effectiveness of Mask R-CNN for the identification and segmentation of fire blight infection in images taken in complex orchard conditions. These results prove the potential of this non-invasive sensing method in detecting disease in commercial fruit production for site-specific infected canopies removing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
晟sheng完成签到 ,获得积分10
1秒前
MiLi完成签到,获得积分10
1秒前
zhang完成签到,获得积分10
2秒前
2秒前
2秒前
2秒前
无头苍蝇发布了新的文献求助10
3秒前
糕糕发布了新的文献求助10
3秒前
3秒前
阿桃发布了新的文献求助20
3秒前
4秒前
Abdurrahman完成签到,获得积分10
5秒前
酆百川完成签到,获得积分10
5秒前
尽我所能完成签到,获得积分10
6秒前
6秒前
6秒前
共享精神应助hanchenhui采纳,获得10
7秒前
H华ua应助小吉采纳,获得10
7秒前
刘雪晴发布了新的文献求助10
7秒前
英姑应助子言采纳,获得10
8秒前
尽我所能发布了新的文献求助10
8秒前
麻薯麻薯完成签到,获得积分10
8秒前
鱼蛋丸子发布了新的文献求助10
9秒前
10秒前
11秒前
11秒前
11秒前
柯语雪完成签到 ,获得积分10
12秒前
科研通AI5应助xx-xxx采纳,获得10
12秒前
Dai发布了新的文献求助10
12秒前
13秒前
打打应助cyanpomelo采纳,获得20
13秒前
14秒前
xiao完成签到,获得积分10
14秒前
吉祥财子发布了新的文献求助10
15秒前
利莫里亚的鱼塘关注了科研通微信公众号
15秒前
16秒前
16秒前
党参发布了新的文献求助10
16秒前
田鑫智发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
中国兽药产业发展报告 1000
Biodegradable Embolic Microspheres Market Insights 888
Quantum reference frames : from quantum information to spacetime 888
Pediatric Injectable Drugs 500
Instant Bonding Epoxy Technology 500
La RSE en pratique 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4419728
求助须知:如何正确求助?哪些是违规求助? 3900397
关于积分的说明 12128881
捐赠科研通 3546311
什么是DOI,文献DOI怎么找? 1946123
邀请新用户注册赠送积分活动 986318
科研通“疑难数据库(出版商)”最低求助积分说明 882508