Detection and infected area segmentation of apple fire blight using image processing and deep transfer learning for site-specific management

多光谱图像 人工智能 RGB颜色模型 归一化差异植被指数 计算机科学 遥感 深度学习 植被(病理学) 卷积神经网络 计算机视觉 模式识别(心理学) 叶面积指数 地理 生态学 医学 病理 生物
作者
Md Sultan Mahmud,Long He,Azlan Zahid,Paul Heinemann,Daeun Choi,Grzegorz Krawczyk,Heping Zhu
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:209: 107862-107862 被引量:8
标识
DOI:10.1016/j.compag.2023.107862
摘要

Advanced sensing technologies and deep learning models are needed for automatic recognition of pathogens to protect trees in orchards. This study developed a fire blight disease detection and infected area segmentation system using image processing and deep learning approaches to automate the detection process in a complex apple orchard environment for site-specific management. Two types of images were acquired: multispectral images from an unmanned aerial vehicle (UAV) using a multispectral camera and red–greenblue (RGB) images from the ground using two different cameras. Multispectral images were preprocessed and used for image feature analysis by calculating vegetation indices, including excessive blue (ExB), normalized difference vegetation index (NDVI), green normalized difference vegetation index (GNDVI), red-edge normalized difference vegetation index (RENDVI), modified ratio vegetation index (RVI), and triangular blueness index (TBI). Vegetation indices were calculated from a total of 60 multispectral images (30 heathy and 30 fire blight infected). Results showed that RVI was most sensitive to fire blight infection among the six indices. A support vector machine model was used to classify unhealthy tree canopies. A Mask Region-Convolutional Neural Network (Mask R-CNN) based deep learning model was developed from RGB infected images. A total of 880 images were used for training, and 220 images were used for validation. Another 110 images were used for testing the trained Mask R-CNN model. A precision of 92.8 % and recall of 91.2 % were obtained by detecting the infected canopies using a ResNet-101 backbone and intersection over union (IoU) threshold of 0.7. The high precision demonstrates the effectiveness of Mask R-CNN for the identification and segmentation of fire blight infection in images taken in complex orchard conditions. These results prove the potential of this non-invasive sensing method in detecting disease in commercial fruit production for site-specific infected canopies removing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
巴拉巴拉巴拉拉应助fishhh采纳,获得50
3秒前
CT完成签到,获得积分10
5秒前
10秒前
10秒前
12秒前
14秒前
Wlin发布了新的文献求助20
14秒前
青橘短衫发布了新的文献求助10
14秒前
oxs完成签到 ,获得积分10
16秒前
小蘑菇应助ronnie采纳,获得10
16秒前
坤坤发布了新的文献求助10
17秒前
20秒前
PatriciaYJ完成签到 ,获得积分10
20秒前
英俊的铭应助gyh采纳,获得10
20秒前
不要再忘登陆密码了完成签到,获得积分10
21秒前
Ava应助坤坤采纳,获得10
22秒前
汉堡包应助源源采纳,获得10
24秒前
25秒前
27秒前
坤坤完成签到,获得积分10
28秒前
Axs发布了新的文献求助200
31秒前
31秒前
heroiheart'发布了新的文献求助10
32秒前
tianxiong完成签到,获得积分10
33秒前
科研通AI2S应助翁若翠采纳,获得10
33秒前
35秒前
36秒前
木子水告完成签到,获得积分10
37秒前
标致的小天鹅完成签到,获得积分20
38秒前
洪山老狗发布了新的文献求助10
41秒前
41秒前
43秒前
顾矜应助安静小懒猪采纳,获得10
43秒前
思源应助标致的小天鹅采纳,获得10
44秒前
45秒前
kk发布了新的文献求助10
45秒前
发论文发布了新的文献求助10
46秒前
47秒前
要减肥的尔安完成签到,获得积分10
47秒前
眼睛大背包完成签到,获得积分10
48秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778900
求助须知:如何正确求助?哪些是违规求助? 3324431
关于积分的说明 10218406
捐赠科研通 3039488
什么是DOI,文献DOI怎么找? 1668198
邀请新用户注册赠送积分活动 798591
科研通“疑难数据库(出版商)”最低求助积分说明 758440