A Data-Driven Prediction Model of Blast Furnace Gas Generation Based on Spectrum Decomposition

计算机科学 人工神经网络 高炉 高炉煤气 正确性 主成分分析 脉冲响应 算法 人工智能 数学 材料科学 数学分析 冶金
作者
Lili Feng,Jun Peng,Zhaojun Huang
出处
期刊:Journal of Advanced Computational Intelligence and Intelligent Informatics [Fuji Technology Press Ltd.]
卷期号:27 (2): 304-313 被引量:6
标识
DOI:10.20965/jaciii.2023.p0304
摘要

Blast furnace gas (BFG) is an important secondary energy in the iron and steel industries, and its efficient and reasonable utilization is the key to improving the economic efficiency of enterprises and the level of energy conservation and emission reduction. Aiming at the problems of difficult accurate modeling on the generation process and difficult prediction of real-time flow, this paper proposes a generation prediction model based on spectrum decomposition. Firstly, the major chemical reactions, production process, and data characteristics of blast furnace are analyzed, and the input variables for the prediction model are reasonably selected based on the correlation analysis results. Then, according to the spectrum characteristics, the BFG data is decomposed into low-frequency and medium-frequency parts by two finite impulse response filters. Next, for the low- and middle-frequency components of data, a low-frequency component prediction model based on the support vector regression, and a middle-frequency component prediction model based on the Elman neural network (ENN) are designed respectively. Finally, we decompose the spectrum of the actual industrial production data and find that the spectrum of the decomposed data basically meets the expected target, which verifies the effectiveness of the finite impulse response filters. In addition, we compare the prediction effect of the designed combined model with other models, such as the support vector regression, the back-propagation neural network, and the ENN. The final experimental results show the correctness, effectiveness, and superiority of the combined model and the spectral decomposition method proposed in this paper.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ZYB143发布了新的文献求助10
1秒前
charm完成签到,获得积分10
2秒前
bzmcwk发布了新的文献求助30
3秒前
4秒前
4秒前
4秒前
冷酷的天宇完成签到,获得积分10
5秒前
Ava应助邬紫依采纳,获得10
5秒前
kyou完成签到,获得积分10
7秒前
bkagyin应助科研通管家采纳,获得10
7秒前
asdfzxcv应助科研通管家采纳,获得10
7秒前
BowieHuang应助科研通管家采纳,获得10
7秒前
王卫应助科研通管家采纳,获得10
7秒前
领导范儿应助科研通管家采纳,获得10
7秒前
asdfzxcv应助科研通管家采纳,获得10
7秒前
CipherSage应助科研通管家采纳,获得10
7秒前
李爱国应助科研通管家采纳,获得10
7秒前
BowieHuang应助科研通管家采纳,获得10
7秒前
BowieHuang应助科研通管家采纳,获得10
7秒前
7秒前
asdfzxcv应助科研通管家采纳,获得10
7秒前
量子星尘发布了新的文献求助10
7秒前
香蕉觅云应助科研通管家采纳,获得10
7秒前
7秒前
NexusExplorer应助科研通管家采纳,获得10
7秒前
8秒前
asdfzxcv应助科研通管家采纳,获得10
8秒前
8秒前
搜集达人应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
无花果应助科研通管家采纳,获得10
8秒前
王卫应助科研通管家采纳,获得10
8秒前
8秒前
爆米花应助科研通管家采纳,获得10
8秒前
量子星尘发布了新的文献求助30
8秒前
Lucas应助南楠采纳,获得10
8秒前
Youlu发布了新的文献求助10
9秒前
10秒前
面壁思过发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5720875
求助须知:如何正确求助?哪些是违规求助? 5262673
关于积分的说明 15292448
捐赠科研通 4870116
什么是DOI,文献DOI怎么找? 2615251
邀请新用户注册赠送积分活动 1565182
关于科研通互助平台的介绍 1522256