Interpretable Graph Convolutional Network for Multi-View Semi-Supervised Learning

可解释性 计算机科学 人工智能 嵌入 图形 卷积神经网络 理论计算机科学 机器学习 深度学习 规范化(社会学) 算法 人类学 社会学
作者
Zhihao Wu,Xincan Lin,Zhenghong Lin,Zhaoliang Chen,Yang Bai,Shiping Wang
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:25: 8593-8606 被引量:30
标识
DOI:10.1109/tmm.2023.3260649
摘要

As real-world data become increasingly heterogeneous, multi-view semi-supervised learning has garnered widespread attention. Although existing studies have made efforts towards this and achieved decent performance, they are restricted to shallow models and how to mine deeper information from multiple views remains to be investigated. As a recently emerged neural network, Graph Convolutional Network (GCN) exploits graph structure to propagate label signals and has achieved encouraging performance, and it has been widely employed in various fields. Nonetheless, research on solving multi-view learning problems via GCN is limited and lacks interpretability. To address this gap, in this paper we propose a framework termed Interpretable Multi-view Graph Convolutional Network (IMvGCN 1 Code is available at https://github.com/ZhihaoWu99/IMvGCN. ). We first combine the reconstruction error and Laplacian embedding to formulate a multi-view learning problem that explores the original space from feature and topology perspectives. In light of a series of derivations, we establish a potential connection between GCN and multi-view learning, which holds significance for both domains. Furthermore, we propose an orthogonal normalization method to guarantee the mathematical connection, which solves the intractable problem of orthogonal constraints in deep learning. In addition, the proposed framework is applied to the multi-view semi-supervised learning task. Comprehensive experiments demonstrate the superiority of our proposed method over other state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
科研通AI5应助空白采纳,获得10
7秒前
7秒前
研友_Z6QEAn应助亦雪采纳,获得20
10秒前
Logom发布了新的文献求助10
14秒前
今后应助菜菜Cc采纳,获得10
18秒前
dududu发布了新的文献求助10
21秒前
希望天下0贩的0应助Logom采纳,获得10
22秒前
23秒前
xavier完成签到 ,获得积分10
25秒前
25秒前
27秒前
乐乐应助叶映安采纳,获得10
29秒前
香蕉觅云应助协和_子鱼采纳,获得10
29秒前
菜菜Cc发布了新的文献求助10
31秒前
哈哈哈哈完成签到 ,获得积分10
34秒前
空白发布了新的文献求助10
34秒前
35秒前
JF123_完成签到 ,获得积分10
38秒前
carl发布了新的文献求助10
39秒前
wwqc完成签到,获得积分0
39秒前
保持理智完成签到,获得积分10
40秒前
嘻嘻哈哈眼药水完成签到,获得积分10
40秒前
43秒前
田様应助carl采纳,获得30
44秒前
45秒前
48秒前
48秒前
阳光海蓝发布了新的文献求助10
51秒前
科研通AI5应助科研通管家采纳,获得10
52秒前
NPG应助科研通管家采纳,获得10
53秒前
情怀应助科研通管家采纳,获得10
53秒前
CodeCraft应助科研通管家采纳,获得10
53秒前
彭于晏应助123采纳,获得10
53秒前
科研通AI5应助科研通管家采纳,获得10
53秒前
53秒前
iNk应助科研通管家采纳,获得20
53秒前
斯文败类应助科研通管家采纳,获得10
53秒前
华仔应助科研通管家采纳,获得10
53秒前
0816my应助科研通管家采纳,获得10
53秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778363
求助须知:如何正确求助?哪些是违规求助? 3324059
关于积分的说明 10216978
捐赠科研通 3039300
什么是DOI,文献DOI怎么找? 1667944
邀请新用户注册赠送积分活动 798438
科研通“疑难数据库(出版商)”最低求助积分说明 758385