PUGAN: Physical Model-Guided Underwater Image Enhancement Using GAN with Dual-Discriminators

计算机科学 水下 人工智能 子网 计算机视觉 计算机网络 海洋学 地质学
作者
Runmin Cong,Wenyu Yang,Wei Zhang,Chongyi Li,Chunle Guo,Qingming Huang,Sam Kwong
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2306.08918
摘要

Due to the light absorption and scattering induced by the water medium, underwater images usually suffer from some degradation problems, such as low contrast, color distortion, and blurring details, which aggravate the difficulty of downstream underwater understanding tasks. Therefore, how to obtain clear and visually pleasant images has become a common concern of people, and the task of underwater image enhancement (UIE) has also emerged as the times require. Among existing UIE methods, Generative Adversarial Networks (GANs) based methods perform well in visual aesthetics, while the physical model-based methods have better scene adaptability. Inheriting the advantages of the above two types of models, we propose a physical model-guided GAN model for UIE in this paper, referred to as PUGAN. The entire network is under the GAN architecture. On the one hand, we design a Parameters Estimation subnetwork (Par-subnet) to learn the parameters for physical model inversion, and use the generated color enhancement image as auxiliary information for the Two-Stream Interaction Enhancement sub-network (TSIE-subnet). Meanwhile, we design a Degradation Quantization (DQ) module in TSIE-subnet to quantize scene degradation, thereby achieving reinforcing enhancement of key regions. On the other hand, we design the Dual-Discriminators for the style-content adversarial constraint, promoting the authenticity and visual aesthetics of the results. Extensive experiments on three benchmark datasets demonstrate that our PUGAN outperforms state-of-the-art methods in both qualitative and quantitative metrics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
修辛发布了新的文献求助10
3秒前
5秒前
5秒前
英吉利25发布了新的文献求助30
5秒前
6秒前
123发布了新的文献求助10
9秒前
zhaochenyu发布了新的文献求助30
10秒前
12秒前
12秒前
mit完成签到 ,获得积分10
12秒前
小蘑菇应助BONBON采纳,获得10
13秒前
kugaidatou完成签到,获得积分10
15秒前
柯一一应助TIGun采纳,获得10
17秒前
17秒前
19秒前
香蕉觅云应助我爱亲柠檬采纳,获得10
23秒前
小柯基学从零学起完成签到 ,获得积分10
24秒前
25秒前
sunny发布了新的文献求助10
27秒前
28秒前
28秒前
科研通AI2S应助ZZZ采纳,获得10
28秒前
科研通AI5应助123采纳,获得10
30秒前
信息发布了新的文献求助10
31秒前
国色不染尘完成签到,获得积分10
33秒前
呆萌柚子发布了新的文献求助10
33秒前
34秒前
35秒前
俊逸吐司发布了新的文献求助10
35秒前
搜集达人应助远志采纳,获得10
36秒前
复杂涵柏发布了新的文献求助10
38秒前
传奇3应助小巧幼蓉采纳,获得10
39秒前
40秒前
WXM完成签到 ,获得积分0
40秒前
41秒前
return发布了新的文献求助20
41秒前
42秒前
YoHo完成签到 ,获得积分10
43秒前
44秒前
47秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
Secondary Ion Mass Spectrometry: Basic Concepts, Instrumental Aspects, Applications and Trends 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
Lidocaine regional block in the treatment of acute gouty arthritis of the foot 400
Ecological and Human Health Impacts of Contaminated Food and Environments 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
International Relations at LSE: A History of 75 Years 308
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3930832
求助须知:如何正确求助?哪些是违规求助? 3475608
关于积分的说明 10987912
捐赠科研通 3205765
什么是DOI,文献DOI怎么找? 1771651
邀请新用户注册赠送积分活动 859135
科研通“疑难数据库(出版商)”最低求助积分说明 796967