Classification-based machine learning approaches to predict the taste of molecules: A review

鲜味 品味 涩的 味觉感受器 人工智能 苦味 计算机科学 分类器(UML) 机器学习 认知科学 化学 心理学 食品科学
作者
Cristian Rojas,Davide Ballabio,Viviana Consonni,Diego Suárez‐Estrella,Roberto Todeschini
出处
期刊:Food Research International [Elsevier BV]
卷期号:171: 113036-113036 被引量:19
标识
DOI:10.1016/j.foodres.2023.113036
摘要

The capacity to discriminate safe from dangerous compounds has played an important role in the evolution of species, including human beings. Highly evolved senses such as taste receptors allow humans to navigate and survive in the environment through information that arrives to the brain through electrical pulses. Specifically, taste receptors provide multiple bits of information about the substances that are introduced orally. These substances could be pleasant or not according to the taste responses that they trigger. Tastes have been classified into basic (sweet, bitter, umami, sour and salty) or non-basic (astringent, chilling, cooling, heating, pungent), while some compounds are considered as multitastes, taste modifiers or tasteless. Classification-based machine learning approaches are useful tools to develop predictive mathematical relationships in such a way as to predict the taste class of new molecules based on their chemical structure. This work reviews the history of multicriteria quantitative structure-taste relationship modelling, starting from the first ligand-based (LB) classifier proposed in 1980 by Lemont B. Kier and concluding with the most recent studies published in 2022.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hangongyishan完成签到,获得积分10
刚刚
枫溪发布了新的文献求助10
刚刚
刚刚
云木完成签到 ,获得积分10
刚刚
笨笨金毛发布了新的文献求助10
刚刚
科研通AI5应助fufu采纳,获得10
刚刚
啥也不会完成签到 ,获得积分10
2秒前
2秒前
2秒前
perth完成签到,获得积分10
2秒前
cccui完成签到,获得积分10
2秒前
hangongyishan发布了新的文献求助10
3秒前
丘比特应助zikncy采纳,获得10
3秒前
YooM发布了新的文献求助10
4秒前
Cc完成签到,获得积分10
4秒前
SYLH应助xinyu采纳,获得30
4秒前
4秒前
ding应助搞怪雁风采纳,获得10
5秒前
能干的新筠完成签到,获得积分10
5秒前
范旭东完成签到,获得积分20
5秒前
光亮的诗槐完成签到,获得积分10
6秒前
雾草生完成签到,获得积分10
6秒前
6秒前
miga完成签到 ,获得积分10
6秒前
马听云发布了新的文献求助10
6秒前
7秒前
禾盒完成签到,获得积分20
7秒前
ziyu完成签到,获得积分10
7秒前
7秒前
熠y发布了新的文献求助10
8秒前
闲云野鹤发布了新的文献求助10
8秒前
8秒前
枫溪完成签到,获得积分10
8秒前
lzs发布了新的文献求助10
8秒前
Ava应助二连采纳,获得10
9秒前
CipherSage应助七栀采纳,获得10
9秒前
ggyybb完成签到 ,获得积分10
9秒前
10秒前
10秒前
北海完成签到 ,获得积分10
11秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Pharmacological profile of sulodexide 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3804665
求助须知:如何正确求助?哪些是违规求助? 3349505
关于积分的说明 10344809
捐赠科研通 3065569
什么是DOI,文献DOI怎么找? 1683126
邀请新用户注册赠送积分活动 808727
科研通“疑难数据库(出版商)”最低求助积分说明 764723