Diagnosis of Early Glottic Cancer Using Laryngeal Image and Voice Based on Ensemble Learning of Convolutional Neural Network Classifiers

决策树 人工智能 计算机科学 卷积神经网络 集成学习 分类器(UML) 模式识别(心理学) 上下文图像分类 决策树学习 人工神经网络 深度学习 机器学习 图像(数学)
作者
Ickhwan Kwon,Soo-Geun Wang,Sung‐Chan Shin,Yong-Il Cheon,Byung‐Joo Lee,Jin‐Choon Lee,Dong-Won Lim,Cheolwoo Jo,Youngseuk Cho,Bhum Jae Shin
出处
期刊:Journal of Voice [Elsevier BV]
被引量:13
标识
DOI:10.1016/j.jvoice.2022.07.007
摘要

Objectives The purpose of study is to improve the classification accuracy by comparing the results obtained by applying decision tree ensemble learning, which is one of the methods to increase the classification accuracy for a relatively small dataset, with the results obtained by the convolutional neural network (CNN) algorithm for the diagnosis of glottal cancer. Methods Pusan National University Hospital (PNUH) dataset were used to establish classifiers and Pusan National University Yangsan Hospital (PNUYH) dataset were used to verify the classifier's performance in the generated model. For the diagnosis of glottic cancer, deep learning-based CNN models were established and classified using laryngeal image and voice data. Classification accuracy was obtained by performing decision tree ensemble learning using probability through CNN classification algorithm. In this process, the classification and regression tree (CART) method was used. Then, we compared the classification accuracy of decision tree ensemble learning with CNN individual classifiers by fusing the laryngeal image with the voice decision tree classifier. Results We obtained classification accuracy of 81.03 % and 99.18 % in the established laryngeal image and voice classification models using PNUH training dataset, respectively. However, the classification accuracy of CNN classifiers decreased to 73.88 % in voice and 68.92 % in laryngeal image when using an external dataset of PNUYH. To solve this problem, decision tree ensemble learning of laryngeal image and voice was used, and the classification accuracy was improved by integrating data of laryngeal image and voice of the same person. The classification accuracy was 87.88 % and 89.06 % for the individualized laryngeal image and voice decision tree model respectively, and the fusion of the laryngeal image and voice decision tree results represented a classification accuracy of 95.31 %. Conclusion The results of our study suggest that decision tree ensemble learning aimed at training multiple classifiers is useful to obtain an increased classification accuracy despite a small dataset. Although a large data amount is essential for AI analysis, when an integrated approach is taken by combining various input data high diagnostic classification accuracy can be expected.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
连奥飞发布了新的文献求助30
刚刚
刚刚
乐乐应助Owen采纳,获得10
1秒前
香蕉觅云应助外向蜡烛采纳,获得10
3秒前
执着千筹发布了新的文献求助10
4秒前
7秒前
正直的梦龙完成签到,获得积分10
10秒前
三水完成签到 ,获得积分10
11秒前
Jiaxin发布了新的文献求助20
11秒前
11秒前
医学耗材完成签到 ,获得积分10
12秒前
天不生我叶子完成签到,获得积分10
12秒前
超级幻然发布了新的文献求助10
13秒前
和和和完成签到,获得积分10
13秒前
14秒前
山水之乐完成签到,获得积分10
16秒前
18秒前
20秒前
20秒前
山水之乐发布了新的文献求助50
21秒前
21秒前
miaojuly完成签到,获得积分10
22秒前
22秒前
李爱国应助大侦探皮卡丘采纳,获得10
22秒前
科研通AI5应助QZF采纳,获得10
23秒前
miaojuly发布了新的文献求助10
24秒前
毕业就集采的苦命人完成签到 ,获得积分10
26秒前
超级幻然完成签到,获得积分10
28秒前
轻松博超完成签到,获得积分10
28秒前
张菁发布了新的文献求助10
28秒前
斯文败类应助安静的沛春采纳,获得15
29秒前
yang完成签到,获得积分10
30秒前
33秒前
34秒前
ericzhouxx完成签到,获得积分10
34秒前
科研通AI5应助糟糕的访梦采纳,获得10
35秒前
37秒前
QZF发布了新的文献求助10
39秒前
冷冷暴力完成签到,获得积分10
41秒前
42秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Handbook of Experimental Social Psychology 500
The Martian climate revisited: atmosphere and environment of a desert planet 500
建国初期十七年翻译活动的实证研究. 建国初期十七年翻译活动的实证研究 400
Transnational East Asian Studies 400
Towards a spatial history of contemporary art in China 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3846935
求助须知:如何正确求助?哪些是违规求助? 3389474
关于积分的说明 10557338
捐赠科研通 3109768
什么是DOI,文献DOI怎么找? 1713955
邀请新用户注册赠送积分活动 825026
科研通“疑难数据库(出版商)”最低求助积分说明 775166