Ultrafast Electron Transfer from Crystalline g-C3N4 to Pt Revealed by Femtosecond Transient Absorption Spectroscopy

飞秒 超快激光光谱学 载流子 光催化 结晶度 吸收(声学) 光谱学 电子 材料科学 电子迁移率 分析化学(期刊) 化学物理 化学 光电子学 光学 物理 激光器 有机化学 复合材料 量子力学 催化作用
作者
Xiaona Tong,Junxi Shou,Hao Song,Yilin Wang,Ling Huang,Lisha Yin
出处
期刊:Energy & Fuels [American Chemical Society]
卷期号:36 (19): 11532-11541 被引量:28
标识
DOI:10.1021/acs.energyfuels.2c01365
摘要

Increasing the crystallinity of g-C3N4 is an effective strategy to simultaneously accelerate charge carrier mobility and reduce structural defects to ultimately boost photocatalytic performance. However, current studies mainly focus on basic characterizations such as spectral absorption and morphology control, whereas experimental evidence on charge carrier dynamics is yet to be provided. Herein, crystalline g-C3N4 was prepared by post-treatment of bulk g-C3N4 in KCl–LiCl eutectic mixtures at 550 °C to unravel the charge carrier dynamics in controlling photocatalytic performance. We found that the as-prepared crystalline g-C3N4 achieved a photocatalytic hydrogen evolution rate of 37.0 μmol·h–1, a ca. 28-time enhancement of pristine g-C3N4 without KCl–LiCl treatment. Femtosecond transient absorption spectroscopy demonstrated that 59.5% of the photogenerated electrons were transferred to Pt within 1.6 ps for crystalline g-C3N4, whereas only 21.3% were transferred at a longer 11.8 ps for pristine g-C3N4. Hence, more electrons are transferred and ultrafast electron mobility is achieved for crystalline g-C3N4, which is responsible for its enhanced performance. Intriguingly, two shallow-trapped species were identified in crystalline g-C3N4, while a deep-trapped species and a species associated with charge carrier recombination were observed in pristine g-C3N4. The shallow-trapped species could then migrate to participate in the following proton reduction, providing further evidence of its superior activity. Therefore, this study highlights the effectiveness of crystalline g-C3N4 in promoting charge carrier migration and suppressing charge carrier recombination to boost photocatalytic hydrogen evolution.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
勤恳完成签到,获得积分10
5秒前
北方一号发布了新的文献求助10
6秒前
香蕉觅云应助阿巴阿巴采纳,获得10
7秒前
wzzznh完成签到 ,获得积分10
11秒前
11秒前
辣目童子完成签到 ,获得积分10
15秒前
小鹿斑比完成签到 ,获得积分10
17秒前
23秒前
25秒前
余晖霞光完成签到 ,获得积分10
26秒前
外向的易蓉完成签到 ,获得积分10
28秒前
地瓜儿发布了新的文献求助10
28秒前
科研通AI5应助SEM小菜鸡采纳,获得10
31秒前
会笑的蜗牛完成签到 ,获得积分10
33秒前
35秒前
zxy完成签到 ,获得积分10
35秒前
orixero应助11111采纳,获得10
39秒前
九九发布了新的文献求助10
41秒前
Huang完成签到,获得积分10
41秒前
42秒前
43秒前
脑洞疼应助九九采纳,获得10
48秒前
阿巴阿巴发布了新的文献求助10
50秒前
星希完成签到,获得积分10
56秒前
九九完成签到,获得积分10
59秒前
CipherSage应助牛阳雨采纳,获得10
1分钟前
1分钟前
1分钟前
个性芷珊发布了新的文献求助10
1分钟前
JAYZHANG完成签到 ,获得积分10
1分钟前
nesire发布了新的文献求助20
1分钟前
丘比特应助阿巴阿巴采纳,获得10
1分钟前
吧啦吧啦吧啦啦完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
onward发布了新的文献求助10
1分钟前
自由冬亦完成签到,获得积分10
1分钟前
SEM小菜鸡发布了新的文献求助10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776456
求助须知:如何正确求助?哪些是违规求助? 3321941
关于积分的说明 10208249
捐赠科研通 3037248
什么是DOI,文献DOI怎么找? 1666609
邀请新用户注册赠送积分活动 797579
科研通“疑难数据库(出版商)”最低求助积分说明 757872