六价铬
吸附
化学
磁铁矿
核化学
蒙脱石
朗缪尔吸附模型
铬
Zeta电位
超顺磁性
化学工程
材料科学
冶金
有机化学
磁化
纳米颗粒
工程类
物理
磁场
量子力学
作者
Xiaoxiao Fan,Binxia Zhao,Jixian Ma,Nan Wang,Wenqiang Gao,Yijia Gao,Yuke Zhao,Linxue Liu
摘要
This research compared two potential adsorbents for the efficient adsorption of toxic hexavalent chromium. The non-magnetic material STAC-Mt and the magnetic material FeSO4-STAC-Mt were synthesized by a simple impregnation method using montmorillonite (Mt), octadearyl dimethyl ammonium chloride (STAC) and ferrous sulfate as raw materials. The structural and morphological characteristics of both adsorbents were investigated by BET, XRD, FTIR, Zeta, VSM, TEM, SEM and XPS techniques. SEM and TEM results clearly revealed that FeSO4-STAC-Mt had a more loosely curled structure than STAC-Mt and the existence of well dispersed diamond-shaped magnetic particles. The saturation magnetization intensity of 17.949 emu/g obtained by VSM further confirmed the presence of magnetite particles in FeSO4-STAC-Mt. Due to the superparamagnetic properties of magnetite, the adsorption performance of FeSO4-STAC-Mt was better than STAC-Mt. FeSO4-STAC-Mt adsorbed up to 43.98 mg/g of Cr(VI), meanwhile it was easily separated from the reaction mixture by an external magnetic field. Intermittent adsorption studies at pH, adsorbent dosage and time revealed a rapid Cr(VI) adsorption process. In combination with response surface optimization analysis, a removal rate of 98.03% of Cr(VI) was obtained at pH 5-6. The adsorption process was properly described by the pseudo-second-order kinetic equation and the Langmuir equation, and the adsorption process was chemisorption and single molecular layer adsorption. In addition, the removal of Cr(VI) reached 72.68% after five cycles, demonstrating the good stability of the FeSO4-STAC-Mt.
科研通智能强力驱动
Strongly Powered by AbleSci AI