Explainable machine learning improves interpretability in the predictive modeling of biological stream conditions in the Chesapeake Bay Watershed, USA

分水岭 环境科学 溪流 水文学(农业) 基流 底栖区 流域 河口 水流 地理 海洋学 地质学 地图学 计算机网络 机器学习 计算机科学 岩土工程
作者
Kelly O. Maloney,Claire Buchanan,Rikke D. Jepsen,Kevin P. Krause,Matthew J. Cashman,Benjamin P. Gressler,John A. Young,Matthias Schmid
出处
期刊:Journal of Environmental Management [Elsevier BV]
卷期号:322: 116068-116068 被引量:20
标识
DOI:10.1016/j.jenvman.2022.116068
摘要

Anthropogenic alterations have resulted in widespread degradation of stream conditions. To aid in stream restoration and management, baseline estimates of conditions and improved explanation of factors driving their degradation are needed. We used random forests to model biological conditions using a benthic macroinvertebrate index of biotic integrity for small, non-tidal streams (upstream area ≤200 km2) in the Chesapeake Bay watershed (CBW) of the mid-Atlantic coast of North America. We utilized several global and local model interpretation tools to improve average and site-specific model inferences, respectively. The model was used to predict condition for 95,867 individual catchments for eight periods (2001, 2004, 2006, 2008, 2011, 2013, 2016, 2019). Predicted conditions were classified as Poor, FairGood, or Uncertain to align with management needs and individual reach lengths and catchment areas were summed by condition class for the CBW for each period. Global permutation and local Shapley importance values indicated percent of forest, development, and agriculture in upstream catchments had strong impacts on predictions. Development and agriculture negatively influenced stream condition for model average (partial dependence [PD] and accumulated local effect [ALE] plots) and local (individual condition expectation and Shapley value plots) levels. Friedman's H-statistic indicated large overall interactions for these three land covers, and bivariate global plots (PD and ALE) supported interactions among agriculture and development. Total stream length and catchment area predicted in FairGood conditions decreased then increased over the 19-years (length/area: 66.6/65.4% in 2001, 66.3/65.2% in 2011, and 66.6/65.4% in 2019). Examination of individual catchment predictions between 2001 and 2019 showed those predicted to have the largest decreases in condition had large increases in development; whereas catchments predicted to exhibit the largest increases in condition showed moderate increases in forest cover. Use of global and local interpretative methods together with watershed-wide and individual catchment predictions support conservation practitioners that need to identify widespread and localized patterns, especially acknowledging that management actions typically take place at individual-reach scales.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
ing发布了新的文献求助10
1秒前
Owen应助无敌幸运儿采纳,获得10
2秒前
鱼咬羊发布了新的文献求助10
2秒前
3秒前
育三杯清栀完成签到 ,获得积分10
3秒前
温柔可乐完成签到,获得积分10
5秒前
捏个小雪团完成签到 ,获得积分10
5秒前
Xiaofei完成签到,获得积分10
5秒前
5秒前
大约在冬季完成签到,获得积分10
6秒前
刘子豪发布了新的文献求助10
6秒前
123给123的求助进行了留言
7秒前
7秒前
风趣过客发布了新的文献求助10
9秒前
梦会故乡完成签到,获得积分10
9秒前
不需要昵称完成签到,获得积分10
9秒前
9秒前
9秒前
chwy发布了新的文献求助10
10秒前
含蓄的荔枝应助yy采纳,获得10
10秒前
10秒前
coolkid完成签到 ,获得积分10
10秒前
情怀应助人不犯二枉少年采纳,获得10
10秒前
12秒前
苗条的沛凝完成签到,获得积分20
13秒前
半夏微凉发布了新的文献求助10
13秒前
zhui发布了新的文献求助10
13秒前
14秒前
ct发布了新的文献求助10
14秒前
15秒前
iNk应助舒心宛采纳,获得20
15秒前
15秒前
高兴的易形完成签到 ,获得积分10
15秒前
cell发布了新的文献求助10
16秒前
16秒前
17秒前
17秒前
平淡的翠霜完成签到,获得积分10
17秒前
高分求助中
The world according to Garb 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Mass producing individuality 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3821905
求助须知:如何正确求助?哪些是违规求助? 3364408
关于积分的说明 10429719
捐赠科研通 3083075
什么是DOI,文献DOI怎么找? 1695994
邀请新用户注册赠送积分活动 815428
科研通“疑难数据库(出版商)”最低求助积分说明 769148