Automated periodontitis bone loss diagnosis in panoramic radiographs using a bespoke two-stage detector

射线照相术 卷积神经网络 牙科 牙周炎 探测器 医学 编码(集合论) 光学(聚焦) 自编码 计算机科学 深度学习 模式识别(心理学) 人工智能 放射科 计算机视觉 电信 光学 物理 集合(抽象数据类型) 程序设计语言
作者
Zhengmin Kong,Hui Ouyang,Yiyuan Cao,Tao Huang,Euijoon Ahn,Maoqi Zhang,Huan Liu
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:152: 106374-106374 被引量:25
标识
DOI:10.1016/j.compbiomed.2022.106374
摘要

Periodontitis is a serious oral disease that can lead to severe conditions such as bone loss and teeth falling out if left untreated. Diagnosis of radiographic bone loss (RBL) is critical for the staging and treatment of periodontitis. Unfortunately, the RBL diagnosis by examining the panoramic radiographs is time-consuming. The demand for automated image analysis is urgent. However, existing deep learning methods have limited performances in diagnosis accuracy and have certain difficulties in implementation. Hence, we propose a novel two-stage periodontitis detection convolutional neural network (PDCNN), where we optimize the detector with an anchor-free encoding that allows fast and accurate prediction. We also introduce a proposal-connection module in our detector that excludes less relevant regions of interests (ROIs), making the network focus on more relevant ROIs to improve detection accuracy. Furthermore, we introduced a large-scale, high-resolution panoramic radiograph dataset that captures various complex cases with professional periodontitis annotations. Experiments on our panoramic-image dataset show that the proposed approach achieved an RBL classification accuracy of 0.762. This result shows that our approach outperforms state-of-the-art detectors such as Faster R-CNN and YOLO-v4. We can conclude that the proposed method successfully improves the RBL detection performance. The dataset and our code have been released on GitHub. (https://github.com/PuckBlink/PDCNN).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
1秒前
cmuz发布了新的文献求助10
1秒前
1秒前
SciGPT应助yc采纳,获得10
1秒前
小马甲应助yc采纳,获得10
2秒前
今夕是何年完成签到,获得积分10
2秒前
CodeCraft应助yc采纳,获得10
2秒前
深情安青应助yc采纳,获得10
2秒前
善学以致用应助yc采纳,获得10
2秒前
汉堡包应助yc采纳,获得10
2秒前
搜集达人应助yc采纳,获得10
2秒前
Ava应助yc采纳,获得10
2秒前
guyu发布了新的文献求助10
2秒前
SSQY发布了新的文献求助10
2秒前
感动世倌完成签到,获得积分20
3秒前
3秒前
zyyla完成签到,获得积分10
3秒前
3秒前
CT发布了新的文献求助10
3秒前
哈哈发布了新的文献求助10
4秒前
jy发布了新的文献求助30
4秒前
4秒前
5秒前
九月完成签到,获得积分10
5秒前
kyoko886发布了新的文献求助10
5秒前
略略略发布了新的文献求助10
6秒前
科研通AI5应助XXXD采纳,获得10
6秒前
王了了发布了新的文献求助10
6秒前
6秒前
6秒前
开心不评完成签到,获得积分10
7秒前
m木宁木蒙应助yuyiyi采纳,获得10
7秒前
7秒前
lucy发布了新的文献求助10
8秒前
小鱼儿完成签到,获得积分10
8秒前
充电宝应助分子筛采纳,获得10
8秒前
8秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3789038
求助须知:如何正确求助?哪些是违规求助? 3334180
关于积分的说明 10267495
捐赠科研通 3050372
什么是DOI,文献DOI怎么找? 1674003
邀请新用户注册赠送积分活动 802379
科研通“疑难数据库(出版商)”最低求助积分说明 760570