FASDD: An Open-access 100,000-level Flame and Smoke Detection Dataset for Deep Learning in Fire Detection

计算机科学 火灾探测 深度学习 水准点(测量) 人工智能 预处理器 工作流程 烟雾 遥感 机器学习 数据库 地图学 工程类 地理 建筑工程 废物管理
作者
Ming Wang,Liangcun Jiang,Peng Yue,Dayu Yu,Tianyu Tuo
标识
DOI:10.5194/essd-2022-394
摘要

Abstract. Deep learning methods driven by in situ video and remote sensing images have been used in fire detection. The performance and generalization of fire detection models, however, are restricted by the limited number and modality of fire detection training datasets. A large-scale fire detection benchmark dataset covering complex and varied fire scenarios is urgently needed. This work constructs a 100,000-level Flame and Smoke Detection Dataset (FASDD) based on multi-source heterogeneous flame and smoke images. To the best of our knowledge, FASDD is currently the most versatile and comprehensive dataset for fire detection. It provides a challenging benchmark to drive the continuous evolution of fire detection models. Additionally, we formulate a unified workflow for preprocessing, annotation and quality control of fire samples. Meanwhile, out-of-the-box annotations are published in four different formats for training deep learning models. Deep learning models trained on FASDD demonstrate the potential value and challenges of our dataset in fire detection and localization. Extensive performance evaluations based on classical methods show that most of the models trained on FASDD can achieve satisfactory fire detection results, and especially YOLOv5x achieves nearly 80 % mAP@0.5 accuracy on heterogeneous images spanning two domains of computer vision and remote sensing. And the application in wildfire location demonstrates that deep learning models trained on our dataset can be used in recognizing and monitoring forest fires. It can be deployed simultaneously on watchtowers, drones and optical satellites to build a satellite-ground cooperative observation network, which can provide an important reference for large-scale fire suppression, victim escape, firefighter rescue and government decision-making. The dataset is available from the Science Data Bank website at https://doi.org/10.57760/sciencedb.j00104.00103 (Wang et al., 2022).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mingjie发布了新的文献求助10
3秒前
3秒前
丘比特应助heartbeat采纳,获得10
6秒前
lemongulf完成签到 ,获得积分10
9秒前
9秒前
原子完成签到,获得积分10
9秒前
无444444完成签到,获得积分10
11秒前
12秒前
桐桐应助正直的西牛采纳,获得10
15秒前
wanci应助小陈采纳,获得30
15秒前
16秒前
刺猬发布了新的文献求助10
16秒前
JamesPei应助云阳采纳,获得10
16秒前
17秒前
wanci应助有魅力胡萝卜采纳,获得10
17秒前
曲奇不甜发布了新的文献求助10
17秒前
NexusExplorer应助自由的碧蓉采纳,获得10
19秒前
20秒前
温柔一个阿陈完成签到,获得积分10
21秒前
21秒前
蔡奕瑾发布了新的文献求助10
22秒前
22秒前
23秒前
25秒前
Artin发布了新的文献求助200
25秒前
26秒前
26秒前
李存发布了新的文献求助10
27秒前
情怀应助HopeStar采纳,获得10
27秒前
27秒前
小米发布了新的文献求助10
27秒前
我是老大应助刺猬采纳,获得10
28秒前
赘婿应助皮崇知采纳,获得10
29秒前
29秒前
Mollymama完成签到 ,获得积分10
30秒前
李爱国应助lc采纳,获得10
31秒前
31秒前
丘比特应助brwen采纳,获得10
32秒前
明明完成签到 ,获得积分10
32秒前
领导范儿应助李存采纳,获得10
32秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
Implantable Technologies 500
Ecological and Human Health Impacts of Contaminated Food and Environments 400
Theories of Human Development 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
International Relations at LSE: A History of 75 Years 308
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 计算机科学 纳米技术 复合材料 化学工程 遗传学 基因 物理化学 催化作用 光电子学 量子力学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3921451
求助须知:如何正确求助?哪些是违规求助? 3466268
关于积分的说明 10941881
捐赠科研通 3194840
什么是DOI,文献DOI怎么找? 1765352
邀请新用户注册赠送积分活动 855495
科研通“疑难数据库(出版商)”最低求助积分说明 794854